精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和Sn=1+λan , 其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5= ,求λ.

【答案】
(1)

解:∵Sn=1+λan,λ≠0.

∴an≠0.

当n≥2时,an=Sn﹣Sn1=1+λan﹣1﹣λan1=λan﹣λan1

即(λ﹣1)an=λan1

∵λ≠0,an≠0.∴λ﹣1≠0.即λ≠1,

= ,(n≥2),

∴{an}是等比数列,公比q=

当n=1时,S1=1+λa1=a1

即a1=

∴an= n1


(2)

解:若S5=

则若S5=1+λ( 4=

即( 5= ﹣1=﹣

=﹣ ,得λ=﹣1


【解析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.本题主要考查数列递推关系的应用,根据n≥2时,an=Sn﹣Sn1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.
【考点精析】本题主要考查了等比关系的确定和数列的通项公式的相关知识点,需要掌握等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点.

)求双曲线的方程.

)证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示

(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于利用斜二侧法得到的直观图有下列结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是( )

A. ①② B. C. ③④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示单位:cm,四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积(m2).

(1)求关于的函数关系式;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}的首项a1a(a∈R).设数列的前n项和为Sn,且成等比数列.

(1)求数列{an}的通项公式及Sn

(2).n≥2时,求AnBn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内,定点A,B,C,D满足| |=| |=| |,| || |=| || |=| || |=﹣4,动点P,M满足| |=2, = ,则| |的最大值是

查看答案和解析>>

同步练习册答案