ÒÑÖªµÈ±ÈÊýÁÐ{an} µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒ¹«±È²»µÈÓÚ1£¬ÊýÁÐ{bn}¶ÔÈÎÒâÕýÕûÊýn£¬¾ùÓУº£¨bn+1-bn+2£©•log2a1+£¨bn+2-bn£©•log2a3+£¨bn-bn+1£©•log2a5=0 ³ÉÁ¢£¬b1=1£¬b7=13£»
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ¼°Ç°nÏîºÍSn£»
£¨2£©ÔÚÊýÁÐ{bn}ÖÐÒÀ´ÎÈ¡³öµÚ1ÏµÚ2ÏµÚ4ÏµÚ8Ï¡£¬µÚ2n-1Ï¡£¬×é³ÉÒ»¸öÐÂÊýÁÐ {cn}£¬ÇóÊýÁÐ {cn}µÄÇ°nÏîºÍTn£»
£¨3£©¶Ô£¨1£©£¨2£©ÖеÄSn¡¢Tn£¬µ±n¡Ý3ʱ£¬±È½ÏTnÓëSnµÄ´óС£®
¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©É蹫±ÈΪq£¨q¡Ù1£©£¬a
3=a
1q
2£¬a
5=a
1q
4 ´úÈëÒÑÖªÌõ¼þ£¨b
n+1-b
n+2£©•log
2a
1+£¨b
n+2-b
n£©•log
2a
3+£¨b
n-b
n+1£©•log
2a
5=0£¬»¯¼ò¿Éb
n+2+b
n=2b
n+1£¬ËùÒÔÊýÁÐ{b
n}ÊǵȲîÊýÁУ¬¹Ê¿ÉÇóÊýÁÐ{b
n}µÄͨÏʽ¼°Ç°nÏîºÍS
n£»
£¨2£©¹Û²ìͨÏʽ¿ÉÖª²ÉÓ÷Ö×éÇóºÍ£¬ÔÙ·Ö±ð´úÈëµÈ±ÈÊýÁм°µÈ²îÊýÁеÄÇóºÍ¹«Ê½£¬¼´¿ÉÇóµÃ£®
£¨3£©ÏȲºóÖ¤£¬¼ÆËãn=3ʱ£¬T
3-S
3=2£¾0£»n=4ʱ£¬T
4-S
4=10£¾0£»²Â²ân¡Ý3£¨n¡ÊN£©Ê±£¬T
n£¾S
n£¬´Ó¶øÀûÓÃÊýѧ¹éÄÉ·¨½øÐÐÖ¤Ã÷£®
½â´ð£º½â£º£¨1£©É蹫±ÈΪq£¨q¡Ù1£©£¬a
3=a
1q
2£¬a
5=a
1q
4 ¡£¨2·Ö£©
´úÈ룺£¨b
n+1-b
n+2£©•log
2a
1+£¨b
n+2-b
n£©•log
2a
3+£¨b
n-b
n+1£©•log
2a
5=0µÃ
¡à[£¨b
n+1-b
n+2£©+£¨b
n+2-b
n£©+£¨b
n-b
n+1£©]log
2a
1+2[£¨b
n+2-b
n£©+2£¨b
n-b
n+1£©]log
2q=0
¼´£¨b
n+2+b
n-2b
n+1£©log
2q=0
¡ßq¡Ù1£¬¡àlog
2q¡Ù0
¡àb
n+2+b
n=2b
n+1£¬¡àÊýÁÐ{b
n}ÊǵȲîÊýÁÐ ¡£¨4·Ö£©
¡ß
¡àb
n=2n-1£¬S
n=n
2 ¡£¨6·Ö£©
£¨2£©¡ßc
n=2•2
n-1-1=2
n-1
¡àT
n=£¨2
1-1£©+£¨2
2-1£©+£¨2
3-1£©+¡+£¨2
n-1£©=£¨2
1+2
2+2
3+¡+2
n£©-n=2
n+1-n-2
¼´ÊýÁÐ{b
n}µÄÇ°nÏîºÍS
n=
=2
n+1-n-2¡£¨8·Ö£©
£¨3£©T
n-S
n=2
n+1-£¨n
2+n+2£©
n=3ʱ£¬T
3-S
3=2£¾0£»n=4ʱ£¬T
4-S
4=10£¾0£»
²Â²ân¡Ý3£¨n¡ÊN£©Ê±£¬T
n£¾S
n ¡£¨10·Ö£©
ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÈçÏÂ
¢Ùn=3ʱ£¬T
3-S
3=2£¾0£¨ÒÑÖ¤£©
¢Ú¼ÙÉèn=k£¨k¡Ý3£©Ê±²»µÈʽ³ÉÁ¢£¬¼´2
k+1£¾k
2+k+2 ¡£¨12·Ö£©
n=k+1ʱ£¬2
k+2=2•2
k+1£¾2£¨k
2+k+2£©
ÓÖ2£¨k
2+k+2£©-[£¨k+1£©
2+£¨k+1£©+2]=k
2-k£¾0
¡à2
k+2£¾2£¨k
2+k+2£©£¾£¨k+1£©
2+£¨k+1£©+2
¡àT
k+1£¾S
k+1¼´n=k+1ʱ£¬²»µÈʽ³ÉÁ¢£®
ÓÉ¢Ù¢ÚÖª£¬µ±µ±n¡Ý3ʱ£¬T
n£¾S
n ¡£¨14·Ö£©
µãÆÀ£º±¾ÌâÊôÓÚÊýÁÐ×ÛºÏÔËÓÃÌ⣬¿¼²éÁËÓÉËù¸øµÄµÝÍƹØϵ֤Ã÷ÊýÁеÄÐÔÖÊ£¬¶ÔËù¸øµÄµÝÍƹØϵ½øÐÐÑо¿ÇóÊýÁеĵÝÍƹ«Ê½ÒÔ¼°ÀûÓÃÊýÁеÄÇóºÍ¹«Ê½ÇóÆäºÍ£¬ÄѶȽϴó£¬×ÛºÏÐÔºÜÇ¿£¬¶Ô´ðÌâÕß̽¾¿µÄÒâʶÓë̽¾¿¹æÂɵÄÄÜÁ¦ÒªÇó½Ï¸ß£¬ÊÇÒ»µÀÄÜÁ¦ÐÍÌ⣮