ÒÑÖªµÈ±ÈÊýÁÐ{an} µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒ¹«±È²»µÈÓÚ1£¬ÊýÁÐ{bn}¶ÔÈÎÒâÕýÕûÊýn£¬¾ùÓУº£¨bn+1-bn+2£©•log2a1+£¨bn+2-bn£©•log2a3+£¨bn-bn+1£©•log2a5=0 ³ÉÁ¢£¬b1=1£¬b7=13£»
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ¼°Ç°nÏîºÍSn£»
£¨2£©ÔÚÊýÁÐ{bn}ÖÐÒÀ´ÎÈ¡³öµÚ1ÏµÚ2ÏµÚ4ÏµÚ8Ï¡­£¬µÚ2n-1Ï¡­£¬×é³ÉÒ»¸öÐÂÊýÁР{cn}£¬ÇóÊýÁР{cn}µÄÇ°nÏîºÍTn£»
£¨3£©¶Ô£¨1£©£¨2£©ÖеÄSn¡¢Tn£¬µ±n¡Ý3ʱ£¬±È½ÏTnÓëSnµÄ´óС£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©É蹫±ÈΪq£¨q¡Ù1£©£¬a3=a1q2£¬a5=a1q4 ´úÈëÒÑÖªÌõ¼þ£¨bn+1-bn+2£©•log2a1+£¨bn+2-bn£©•log2a3+£¨bn-bn+1£©•log2a5=0£¬»¯¼ò¿Ébn+2+bn=2bn+1£¬ËùÒÔÊýÁÐ{bn}ÊǵȲîÊýÁУ¬¹Ê¿ÉÇóÊýÁÐ{bn}µÄͨÏʽ¼°Ç°nÏîºÍSn£»
£¨2£©¹Û²ìͨÏʽ¿ÉÖª²ÉÓ÷Ö×éÇóºÍ£¬ÔÙ·Ö±ð´úÈëµÈ±ÈÊýÁм°µÈ²îÊýÁеÄÇóºÍ¹«Ê½£¬¼´¿ÉÇóµÃ£®
£¨3£©ÏȲºóÖ¤£¬¼ÆËãn=3ʱ£¬T3-S3=2£¾0£»n=4ʱ£¬T4-S4=10£¾0£»²Â²ân¡Ý3£¨n¡ÊN£©Ê±£¬Tn£¾Sn£¬´Ó¶øÀûÓÃÊýѧ¹éÄÉ·¨½øÐÐÖ¤Ã÷£®
½â´ð£º½â£º£¨1£©É蹫±ÈΪq£¨q¡Ù1£©£¬a3=a1q2£¬a5=a1q4 ¡­£¨2·Ö£©
´úÈ룺£¨bn+1-bn+2£©•log2a1+£¨bn+2-bn£©•log2a3+£¨bn-bn+1£©•log2a5=0µÃ
¡à[£¨bn+1-bn+2£©+£¨bn+2-bn£©+£¨bn-bn+1£©]log2a1+2[£¨bn+2-bn£©+2£¨bn-bn+1£©]log2q=0
¼´£¨bn+2+bn-2bn+1£©log2q=0
¡ßq¡Ù1£¬¡àlog2q¡Ù0
¡àbn+2+bn=2bn+1£¬¡àÊýÁÐ{bn}ÊǵȲîÊýÁР  ¡­£¨4·Ö£©
¡ß
¡àbn=2n-1£¬Sn=n2   ¡­£¨6·Ö£©
£¨2£©¡ßcn=2•2n-1-1=2n-1
¡àTn=£¨21-1£©+£¨22-1£©+£¨23-1£©+¡­+£¨2n-1£©=£¨21+22+23+¡­+2n£©-n=2n+1-n-2
  ¼´ÊýÁÐ{bn}µÄÇ°nÏîºÍSn==2n+1-n-2¡­£¨8·Ö£©
£¨3£©Tn-Sn=2n+1-£¨n2+n+2£©
n=3ʱ£¬T3-S3=2£¾0£»n=4ʱ£¬T4-S4=10£¾0£»
²Â²ân¡Ý3£¨n¡ÊN£©Ê±£¬Tn£¾Sn            ¡­£¨10·Ö£©
ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÈçÏÂ
¢Ùn=3ʱ£¬T3-S3=2£¾0£¨ÒÑÖ¤£©
¢Ú¼ÙÉèn=k£¨k¡Ý3£©Ê±²»µÈʽ³ÉÁ¢£¬¼´2k+1£¾k2+k+2 ¡­£¨12·Ö£©
n=k+1ʱ£¬2k+2=2•2k+1£¾2£¨k2+k+2£©
ÓÖ2£¨k2+k+2£©-[£¨k+1£©2+£¨k+1£©+2]=k2-k£¾0
¡à2k+2£¾2£¨k2+k+2£©£¾£¨k+1£©2+£¨k+1£©+2
¡àTk+1£¾Sk+1
¼´n=k+1ʱ£¬²»µÈʽ³ÉÁ¢£®
ÓÉ¢Ù¢ÚÖª£¬µ±µ±n¡Ý3ʱ£¬Tn£¾Sn ¡­£¨14·Ö£©
µãÆÀ£º±¾ÌâÊôÓÚÊýÁÐ×ÛºÏÔËÓÃÌ⣬¿¼²éÁËÓÉËù¸øµÄµÝÍƹØϵ֤Ã÷ÊýÁеÄÐÔÖÊ£¬¶ÔËù¸øµÄµÝÍƹØϵ½øÐÐÑо¿ÇóÊýÁеĵÝÍƹ«Ê½ÒÔ¼°ÀûÓÃÊýÁеÄÇóºÍ¹«Ê½ÇóÆäºÍ£¬ÄѶȽϴó£¬×ÛºÏÐÔºÜÇ¿£¬¶Ô´ðÌâÕß̽¾¿µÄÒâʶÓë̽¾¿¹æÂɵÄÄÜÁ¦ÒªÇó½Ï¸ß£¬ÊÇÒ»µÀÄÜÁ¦ÐÍÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

5¡¢ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬¹«±Èq¡Ù1£¬ÈôS5=3a4+1£¬S4=2a3+1£¬ÔòqµÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a2=9£¬a5=243£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Áîbn=log3an£¬ÇóÊýÁÐ{
1bnbn+1
}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa1•a7=3a3a4£¬ÔòÊýÁÐ{an}µÄ¹«±Èq=
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖÐa1=64£¬¹«±Èq¡Ù1£¬ÇÒa2£¬a3£¬a4·Ö±ðΪijµÈ²îÊýÁеĵÚ5ÏµÚ3ÏµÚ2Ï
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=log2an£¬ÇóÊýÁÐ{|bn|}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a3+a6=36£¬a4+a7=18£®Èôan=
12
£¬Ôòn=
9
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸