精英家教网 > 高中数学 > 题目详情

如图,已知半圆O的直径AB=2,点CAB的延长线上,BC=1,点P为半圆O上的一个动点,以PC为边作等边三角形PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值.

答案:
解析:


提示:

先选择一个引起面积变化的参数,设∠POBθ,再将四边形OPDC的面积表示为参数θ的函数,将最大面积问题转化为求函数的最大值问题.


练习册系列答案
相关习题

科目:高中数学 来源:扬州大学附属中学高一上学期期末测试卷高一数学[上学期] 题型:044

已知点T是半圆O的直径AB上一点,AB=2、OT=t(0<t<1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图所示的直角坐标系.

(Ⅰ)写出直线的方程;

(Ⅱ)计算出点P、Q的坐标;

(Ⅲ)证明:沿PT射出的光线,经AB反射后,反射光线通过点Q.

查看答案和解析>>

同步练习册答案