精英家教网 > 高中数学 > 题目详情

如图,四边形是正方形,平面分别为的中点.

(1)求证:平面
(2)求平面与平面所成锐二面角的大小.

(1)(2)

解析试题分析:(1)利用三角形的中位线的性质证明FG∥PE,再根据直线和平面平行的判定定理证得结论;
(2)建立空间直角坐标系,根据两个平面的法向量所成的角与二面角相等或互补,由两个平面法向量所成的角求解二面角的大小

(1)证明:,分别为的中点,.   
平面平面,   
//平面.    
(2)解:平面 平面
平面.
 四边形是正方形,.
为原点,分别以直线轴, 轴,
建立如图所示的空间直角坐标系,设  ,
,
,分别为的中点,
,, 
为平面的一个法向量,则,
,令

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,分别是正三棱柱的棱的中点,且棱.
(1)求证:平面
(2)在棱上是否存在一点,使二面角的大小为,若存在,求的长,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于.
(1)求证:
(2)若底面,且,求直线与平面所成角的大小,并求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面.
(1)证明:平面;
(2)求二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,
。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,   
并求出的长度。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,平面 是的中点,
(1)证明:∥平面
(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为1的等边三角形ABC中,DE分别是ABAC边上的点,AD=AEFBC的中点,AFDE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.

(1) 证明://平面;
(2) 证明:平面;
(3)当时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知向量与向量平行,则__

查看答案和解析>>

同步练习册答案