精英家教网 > 高中数学 > 题目详情
17.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,则a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

分析 把1变成底数的对数,讨论底数与1的关系,确定函数的单调性,根据函数的单调性整理出关于a的不等式,得到结果,把两种情况求并集得到结果.

解答 解:∵loga$\frac{2}{3}$<1=logaa,
当a>1时,函数是一个增函数,不等式成立,
当0<a<1时,函数是一个减函数,根据函数的单调性有a<$\frac{2}{3}$,
综上可知a的取值是(0,$\frac{2}{3}$)∪(1,+∞),
故选:B.

点评 本题主要考查对数函数单调性的应用、不等式的解法等基础知识,本题解题的关键是对于底数与1的关系,这里应用分类讨论思想来解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.对于集合A、B,“A≠B”是“A∩B?A∪B”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个弹性小球从10米自由落下,着地后反弹到原来高度的$\frac{4}{5}$处,再自由落下,又弹回到上一次高度的$\frac{4}{5}$处,假设这个小球能无限次反弹,则这个小球在这次运动中所经过的总路程为(  )
A.50B.80C.90D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow a$,$\overrightarrow b$是单位向量,$\overrightarrow a•\overrightarrow b=0$,且向量$\overrightarrow c$满足$|\overrightarrow c-\overrightarrow a-\overrightarrow b|$=1,则|$\overrightarrow c$|的取值范围是(  )
A.$[\sqrt{2}-1,\;\sqrt{2}+1]$B.$[\sqrt{2}-1,\;\sqrt{2}]$C.$[\sqrt{2},\;\sqrt{2}+1]$D.$[2-\sqrt{2},\;2+\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设双曲线C的两个焦点为(-$\sqrt{2}$,0),($\sqrt{2},0$),一个顶点(1,0),求双曲线C的方程,离心率及渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆O:x2+y2=5和点A(2,1)则过点A且和圆O相切的直线与两坐标轴围成的三角形的面积等于$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线4x-3y=0与圆x2+y2=36的位置关系是(  )
A.相交B.相离C.相切D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.圆心在原点且被直线3x+4y+15=0截得弦长为3$\sqrt{3}$的圆的方程${x}^{2}+{y}^{2}=\frac{81}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某农场规划将果树种在正方形的场地内.为了保护果树不被风吹,决定在果树的周围种松树. 在如图里,你可以看到规划种植果树的列数(n),果树数量及松树数量的规律:
(1)按此规律,n=5时果树数量及松树数量分别为多少;并写出果树数量an,及松树数量bn关于n的表达式.
(2)定义:f(n+1)-f(n)(n∈N*)为f(n)增加的速度;现农场想扩大种植面积,问:哪种树增加的速度会更快?并说明理由.

查看答案和解析>>

同步练习册答案