精英家教网 > 高中数学 > 题目详情

设集合A={y|y=x2-2x+1},x∈R,集合B={y|y=-x2+1},x∈R,则A∩B=________.

{y|0≤y≤1}
分析:分别求出两集合中两函数的值域即可得到两集合,求出两集合的交集即可.
解答:因为y=x2-2x+1=(x-1)2≥0,所以集合A=[0,+∞),
又y=-x2+1≤1,所以集合B=(-∞,1],
则A∩B={y|0≤y≤1}
故答案为:{y|0≤y≤1}
点评:此题属于以函数的值域为平台,考查了求交集的运算,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={y|y=
x2-1
,B={x|y=
x2-1
}
,则下列关系中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=log2x,x>1},B={y|y=(
12
)
x
,x>1}
,C={y|y=x2-4x,x>1}.
求(Ⅰ)A∩B;     
(Ⅱ)B∪C;     
(Ⅲ)(CRA)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=2x+1},全集U=R,则CUA为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=1nx,x≥1},B={y|y=1-2x,x∈R}则A∩B=(  )
A、[0.1)B、[0,1]C、(-∞,1]D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=2x,1≤x≤2},B={x|0<lnx<1},C={x|t+1<x<2t,t∈R}.
(1)求A∩B;
(2)若A∩C=C,求t的取值范围.

查看答案和解析>>

同步练习册答案