【题目】设集合,若X是的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称X为的奇(偶)子集.
(1)写出S4的所有奇子集;
(2)求证:的奇子集与偶子集个数相等;
(3)求证:当n≥3时,的所有奇子集的容量之和等于所有偶子集的容量之和.
科目:高中数学 来源: 题型:
【题目】已知函数的图象上有一点列,点在轴上的射影是,且 (且), .
(1)求证: 是等比数列,并求出数列的通项公式;
(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.
(3)设四边形的面积是,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是( )
A.多于4个 B.4个
C.3个 D.2个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在,分数在以上(含)的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图(见下图).
(1)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的列联表,能否有超过的把握认为“获奖与学生的文理科有关”?
文科生 | 理科生 | 合计 | |
获奖 | |||
不获奖 | |||
合计 |
附表及公式:
,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象过点,且在该点处的切线与直线垂直.
(1)求实数,的值;
(2)对任意给定的正实数,曲线上是否存在两点,,使得是以为直角顶点的直角三角形,且此三角形斜边中点在轴上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 过椭圆: 的短轴端点, 分别是圆与椭圆上任意两点,且线段长度的最大值为3.
(1)求椭圆的方程;
(2)过点作圆的一条切线交椭圆于两点,求的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com