精英家教网 > 高中数学 > 题目详情
19.下列说法正确的是(  )
A.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数”的充要条件
D.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,则¬p是真命题

分析 直接写出特称命题的否定判断;由复合命题的真假判定判断B;由对数函数的单调性结合充分必要条件的判断方法判断C;利用辅助角公式把sinx+cosx化积求出范围判断D.

解答 解:命题“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3≥0”.故A错误;
若p∧q为真命题,则p、q均为真命题,∴p∨q为真命题,反之,p∨q为真命题,p、q中可能一真一假,此时p∧q不是真命题.
∴“p∧q为真命题”是“p∨q为真命题”的充分不必要条件.故B错误;
若a>1,则f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数;反之,若f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数,则a>1.
∴“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数”的充要条件.故C正确;
∵sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})≤\sqrt{2}$,∴命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”为真命题,则¬p是假命题.故D错误.
故选:C.

点评 本题考查命题的真假判断与应用,考查命题的否定由否命题,训练了充分必要条件的判断方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2(x+a)-2(a∈R)在x=2处取得极值.
(1)求实数a的值;
(2)求函数f(x)的单调区间,并指出其单调性;
(3)求函数f(x)在[-1,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a=22.1,b=21.9,c=0.32.1,则a,b,c大小关系为a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列四种说法:
①函数y=$\frac{{x}^{2}-x+4}{x-1}$(x>1)的最小值为5;
②等差数列{an}中,a1,a3,a4成等比数列,则公比为$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,则$\frac{2}{a}+\frac{3}{b}$的最小值为5+2$\sqrt{6}$;
④方程x2+ax+2b=0的两个实数根为x1,x2,且0<x1<1<x2<2,则$\frac{b-2}{a-1}$的取值范围是($\frac{1}{4}$,1).
其中正确的命题为①③④(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=asinx+cosx在区间$(\frac{π}{6},\frac{π}{4})$上单调递增,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三角形ABC中,A、B、C所对的边分别为a,b,c;若A=$\frac{π}{3}$,则$a(cosC+\sqrt{3}sinC)$=(  )
A.a+bB.a+cC.b+cD.a+b+c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数g(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x>0时,xg(x)-f(x)<0,则使得f(x)<0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下表是一个容量为60的样本(60名学生的数学考试成绩,成绩为0-100的整数)的频率分布表,则表中频率a的值为0.35.
分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5
频数3612
频率a0.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则$\frac{1}{m}+\frac{3}{n}$的最小
值为(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案