精英家教网 > 高中数学 > 题目详情
9.如图.已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1.H是B1C1的中点.
(1)求证:E,B,F,D1四点共面:
(2)求证:平面A1GH∥平面BED1F.

分析 (1)在DD1上取点N,使DN=1,连接EN,CN,易得四边形ADNE是平行四边形,以及四边形BCNE是平行四边形,由此推知CN∥BE,则FD1∥BE,得到E、B、F、D1四点共面;
(2)利用三角形相似证明HG∥FB,由(1)知,A1G∥BE,从而可证平面A1GH∥平面BED1F.

解答 证明:(1)如图:

在DD1上取一点N使得DN=1,
连接CN,EN,则AE=DN=1.CF=ND1=2、
因为CF∥ND1所以四边形CFD1N是平行四边形,
所以D1F∥CN.
同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,
又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,
所以四边形CNEB是平行四边形,
所以CN∥BE,
所以D1F∥BE,
所以E,B,F,D1四点共面;
(2)因为H是B1C1的中点,所以B1H=$\frac{3}{2}$,
因为B1G=1,所以 $\frac{{B}_{1}G}{{B}_{1}H}$=$\frac{2}{3}$,
因为 $\frac{FC}{BC}$=$\frac{2}{3}$,且∠FCB=∠GB1H=90°,
所以△B1HG∽△CBF,
所以∠B1GH=∠CFB=∠FBG,
所以HG∥FB,
由(1)知,A1G∥BE且HG∩A1G=G,FB∩BE=B,
所以平面A1GH∥平面BED1F.

点评 本题主要考查了了共面的判定,考查面面平行的判定,考查对基础知识的综合应用能力和基本定理的掌握能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知双曲线C的离心率为2,它的一个焦点是(0,2),则双曲线C的标准方程为y2-$\frac{{x}^{2}}{3}$=1,渐近线的方程是y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$cos(-\frac{52π}{3})$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,已知$\overrightarrow{AB}•\overrightarrow{AC}=2\overrightarrow{AB}•\overrightarrow{BC}$若cosA=$\frac{4}{5}$,则tanB=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为③④(注:把你认为正确的结论的序号都填上).
⑤图中正方体ABCD-A1B1C1D1的棱所在直线中与直线AB是异面直线的有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.比较大小sin50°>cos50°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明棱柱的侧面是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个等腰直角三角形在一个平面内的正投影可能是①②③④.(把你认为正确的选项的序号填在横线上)
①等腰直角三角形;
②直角非等腰三角形;
③钝角三角形;
④锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解释下列概率的含义:
(1)某厂生产产品合格的概率为0.9;
(2)一次抽奖活动中,中奖的概率为0.2.

查看答案和解析>>

同步练习册答案