分析 把已知数列递推式变形,可得数列{$\frac{1}{{a}_{n}}$}构成以$\frac{1}{2}$为首项,以2为公差的等差数列,求出等差数列的通项公式后可得数列{an}的通项公式.
解答 解:由$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+2(n≥2),得$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}=2(n≥2)$,
又a1=2,∴$\frac{1}{{a}_{1}}=\frac{1}{2}$,
则数列{$\frac{1}{{a}_{n}}$}构成以$\frac{1}{2}$为首项,以2为公差的等差数列,
则$\frac{1}{{a}_{n}}=\frac{1}{2}+2(n-1)=\frac{4n-3}{2}$,
∴${a}_{n}=\frac{2}{4n-3}$.
故答案为:$\frac{2}{4n-3}$.
点评 本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 既是奇函数又是偶函数 | B. | 偶函数,且有两个零点 | ||
C. | 奇函数,且有三个零点 | D. | 偶函数,且只有一个极值点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:假命题 | |
B. | ¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:真命题 | |
C. | ¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:真命题 | |
D. | ¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ②③ | B. | ①④ | C. | ②④ | D. | ③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com