精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是(  )
A.a>0
B.a<5
C.a<10
D.a<20

【答案】C
【解析】解:∵函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R),
∴f(x)=
∵f(x)为R上的“20型增函数”,
∴f(x+20)>f(x),
当x=0时,|20﹣a|﹣a>0,解得a<10.
∴实数a的取值范围是a<10.
故选:C.
【考点精析】掌握函数的值是解答本题的根本,需要知道函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】:实数满足,其中 :实数满足.

(1)若,且为真,求实数的取值范围;

(2)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:

愿意被外派

不愿意被外派

合计

合计

/p>

(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率

参考数据:

(参考公式:,其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不同直线m,n和不同平面α,β,给出下列命题:
, ② , ③m,n异面,④
其中假命题有:(  )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的图象关于直线x=对称,它的周期是π,则以下结论正确的个数(  )
(1)f(x)的图象过点(0,
(2)f(x)的一个对称中心是(,0)
(3)f(x)在[,]上是减函数
(4)将f(x)的图象向右平移|φ|个单位得到函数y=3sinωx的图象.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是
(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.F,G是曲线D上不同的两点,对于定点Q(﹣3,0),有|QF||QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 垂直于底面 分别为 的中点.

(Ⅰ)求证:

(Ⅱ)求四棱锥的体积和截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标,直线被圆截得弦长为

(Ⅰ)求圆的方程;

(Ⅱ)从圆外一点向圆引切线,求切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点,若椭圆上存在一点,满足以椭圆短轴为直径的圆与线段相切于线段的中点.

(1)求椭圆的方程;

(2)过坐标原点的直线交椭圆 两点,其中点在第一象限,过轴的垂线,垂足为,连结并延长交椭圆,求证: .

查看答案和解析>>

同步练习册答案