【题目】已知甲、乙两个旅游景点之间有一条5km的直线型水路,一艘游轮以的速度航行时考虑到航线安全要求,每小时使用的燃料费用为万元为常数,且,其他费用为每小时万元.
若游轮以的速度航行时,每小时使用的燃料费用为万元,要使每小时的所有费用不超过万元,求x的取值范围;
求该游轮单程航行所需总费用的最小值.
科目:高中数学 来源: 题型:
【题目】一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量克随着时间小时变化的函数关系式近似为,其中.
若病人一次服用9克的药剂,则有效治疗时间可达多少小时?
若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为 ,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,直线,动直线垂直于点,线段的垂直平分线交于点,设点的轨迹为.
(Ⅰ)求曲线的方程;
(Ⅱ)以曲线上的点为切点做曲线的切线,设分别与、轴交于两点,且恰与以定点为圆心的圆相切.当圆的面积最小时,求与面积的比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com