精英家教网 > 高中数学 > 题目详情
5.如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,直线AC1与平面BCC1B1所成角的余弦值等于(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{10}}{4}$

分析 由题意,取BC的中点E,连接C1E,AE,证明AE⊥面BB1C1C,∠AC1E就是AC1与平面BB1C1C所成的角,解直角三角形AC1E即可.

解答 解:取BC的中点E,连接C1E,AE
则AE⊥BC,
正三棱柱ABC-A1B1C1中,
∴面ABC⊥面BB1C1C,
面ABC∩面BB1C1C=BC,
∴AE⊥面BB1C1C,
∴∠AC1E就是AC1与平面BB1C1C所成的角,
在Rt△AC1E中,∵AB=AA1
sin∠AC1E=$\frac{AE}{{AC}_{1}}$=$\frac{\sqrt{3}}{2\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.cos∠AC1E=$\sqrt{1-(\frac{\sqrt{6}}{4})^{2}}$=$\frac{\sqrt{10}}{4}$.
故选:D.

点评 考查直线和平面所成的角,求直线和平面所成的角关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.过点(2,-4),且倾斜角的余弦值为-$\frac{3}{5}$的直线方程为4x+3y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x2+2x+2,x∈[-1,2],则函数f(x)的最大值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.cos20°+cos60°+cos100°+cos140°的为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=-$\frac{1}{x}$+1
(1)当x<0时,求函数f(x)的解析式;
(2)证明函数f(x)在区间(-∞,0)上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,且过点P($\sqrt{2}$,$\sqrt{3}$),求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4-2t}\end{array}\right.$(参数t∈R),同时,在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,圆C的极坐标方程为ρ=4cosθ(θ为参数)
(1)求圆C的直角坐标方程.
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,已知点P在曲线xy=1(x>0)上,点P在x轴上的射影为M.若点P在直线x-y=0的下方,则$\frac{O{P}^{2}}{OM-MP}$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足:a1=1,n∈N*
(1)若an+1=2an+n+1,求数列的通项an
(2)若an+1=2an+4n+2,求数列的通项an
(3)若an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$,求数列的通项an
(4)若an+1=an2+2an,求数列的通项an

查看答案和解析>>

同步练习册答案