精英家教网 > 高中数学 > 题目详情

【题目】在数列中,,且对任意,都有

1)计算,由此推测的通项公式,并用数学归纳法证明;

2)若),求无穷数列的前项之和的最大项.

【答案】1.推测,见解析

2)前项和为,最大项为

【解析】

1)直接由所给递推公式计算,并归纳,然后用数学归纳法证明;

2)无穷数列的前项的和可以分成两个等比数列的和,由此可计算和,然后对分类,其偶数项递减,奇数项递增,但所有奇数项都满足,因此有最大.

解:(1)∵,且对任意,都有

由此推测的通项公式,

下面利用数学归纳法证明:

①当时,成立;

②假设当时,

时,

因此当时也成立,

综上:成立.

2),

∴无穷数列的各项之和.

)时,单调递减,因此当时,取得最大值

)时,单调递增,且

综上可得:的最大项为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线轴的交点为,与抛物线的交点为,且

1)求抛物线的方程;

2)过抛物线上一点作两条互相垂直的弦,试问直线是否过定点,若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在区间上的值域;

2)是否存在实数,对任意给定的,在存在两个不同的使得,若存在,求出的范围,若不存在,说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.

(1)求抛物线的标准方程;

(2)若在轴上存在点,过点的直线分别与抛物线相交于两点,且为定值,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,,四边形和四边形是两个全等的等腰梯形.

(1)求证:四边形为矩形;

(2)若平面平面,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1100名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:

分组

频数(单位:名)

使用“余额宝”

使用“财富通”

使用“京东小金库”

40

使用其他理财产品

60

合计

1100

已知这1100名市民中,使用“余额宝”的人比使用“财富通”的人多200名.

(1)求频数分布表中的值;

(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为,“京东小金库”的平均年化收益率为,有3名市民,每个人理财的资金有10000元,且分别存入“余额宝”“财富通”“京东小金库”,求这3名市民2018年理财的平均年化收益率;

(3)若在1100名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取5人,然后从这5人中随机选取2人,求“这2人都使用‘财富通’”的概率.

注:平均年化收益率,也就是我们所熟知的利率,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)已知点,直线的极坐标方程为,它与曲线的交点为,与曲线的交点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面平面.

(1)求证:平面平面

(2)若与平面所成的线面角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中, PA=AB=BC=2. EPC的中点.

1)证明:

2)求三棱锥P-ABC的体积;

3 证明:平面

查看答案和解析>>

同步练习册答案