精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,AB=2,3acosB﹣bcosC=ccosB,点D在线段BC上.

(1)若∠ADC= ,求AD的长;
(2)若BD=2DC,△ACD的面积为 ,求 的值.

【答案】
(1)解:∵3acosB﹣bcosC=ccosB,

∴3sinAcosB=sinCcosB+sinBcosC,3sinAcosB=sin(B+C),

∵B+C=π﹣A,

∴3sinAcosB=sinA,

∵A∈(0,π),

∴sinA>0,

∵B∈(0,π),

在△ABD中,由正弦定理得,


(2)解:设DC=a,则BD=2a,

∵BD=2DC,△ACD的面积为

∴a=2.…(8分)

,由正弦定理可得

∵sin∠ADB=sin∠ADC,


【解析】(1)由三角形内角和定理,两角和的正弦函数公式,正弦定理化简已知等式可得3sinAcosB=sinA,结合sinA>0,可求 ,利用同角三角函数基本关系式可求sinB,进而可求 ,由正弦定理即可求得AD的值.(2)设DC=a,则BD=2a,利用已知及三角形面积公式可求a,利用余弦定理可求AC,由正弦定理可得 ,结合sin∠ADB=sin∠ADC,即可求值得解.
【考点精析】掌握正弦定理的定义是解答本题的根本,需要知道正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某自行车手从O点出发,沿折线O﹣A﹣B﹣O匀速骑行,其中点A位于点O南偏东45°且与点O相距20 千米.该车手于上午8点整到达点A,820分骑至点C,其中点C位于点O南偏东(45°﹣α)(其中sinα= ,0°<α<90°)且与点O相距5 千米(假设所有路面及观测点都在同一水平面上).

(1)求该自行车手的骑行速度;

(2)若点O正西方向27.5千米处有个气象观测站E,假定以点E为中心的3.5千米范围内有长时间的持续强降雨.试问:该自行车手会不会进入降雨区,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过且斜率为的直线交于两点,

(1)求的方程;

(2)求过点且与的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a+b=1,对a,b∈(0,+∞),+≥|2x﹣1|﹣|x+1|恒成立,
(Ⅰ)求+的最小值;
(Ⅱ)求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=ex ;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是 . (填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1,2,加工一件乙设备所需工时分别为2,1.A、B两种设备每月有效使用台时数分别为400和500,分别用表示计划每月生产甲,乙产品的件数.

(Ⅰ)用列出满足生产条件的数学关系式,并画出相应的平面区域;

(Ⅱ)问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程为为参数),圆C的参数方程为为参数),以坐标原点O为极点,轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求直线l和圆C的极坐标方程;

(Ⅱ)设直线l和圆C相交于A,B两点,求弦AB与其所对劣弧所围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p>0,q>0,随机变量ξ的分布列如下:

ξ

p

q

P

q

p

若E(ξ)= .则p2+q2=(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机给人们的生活带来便利的同时,也给青少年的成长带来不利的影响,有人沉迷于手机游戏无法自拔,严重影响了自己的学业,某学校随机抽取个班,调查各班带手机来学校的人数,所得数据的茎叶图如图所示.以组距为将数据分组成,…,时,所作的频率分布直方图是(

A. B.

C. D.

查看答案和解析>>

同步练习册答案