精英家教网 > 高中数学 > 题目详情
(2012•盐城二模)已知函数f1(x)=e|x-2a+1|f2(x)=e|x-a|+1,x∈R
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;
(3)求函数g(x)=
f1(x)+f2(x)
2
-
|f1(x)-f2(x)|
2
在x∈[1,6]上的最小值.
分析:(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+ex-1,利用基本不等式,可求在x∈[2,3]上的最小值;
(2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,由此可求a的取值范围;
(3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1,分类讨论,即可求得g(x)在x∈[1,6]上的最小值.
解答:解:(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+ex-1=
e3
ex
+
ex
e
≥2
e3
ex
×
ex
e
=2e,
当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为2e …4分
(2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立…6分
所以|x-2a+1|≤x-a+1,即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,
则由
2a≥0
2a2≥3a2-2a
,得所求a的取值范围是0≤a≤2…9分
(3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1.
①当1≤2a-1≤6,即1≤a≤
7
2
时,∴g(x)在x∈[1,6]上的最小值为f1(2a-1)=e0=1…10分
②当a<1时,可知2a-1<a,所以
(ⅰ)当h1(a)≤h2(a),得|a-(2a-1)|≤1,即-2≤a≤0时,在x∈[1,6]上,h1(x)<h2(x),即f1(x)>f2(x),所以g(x)=f2(x)的最小值为f2(1)=e2-a
(ii)当h1(a)>h2(a),得|a-(2a-1)|>1,即a<-2或0<a<1时,在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)=f1(x)的最小值为f1(1)=e3-2a
③当a>
7
2
时,因为2a-1>a,可知2a-1>6,且h1(6)=2a-7>a-5=h2(6),所以
(ⅰ)当
7
2
<a≤6
时,g(x)的最小值为f2(a)=e
(ii)当a>6时,因为h1(a)=a-1>1=h2(a),∴在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)在x∈[1,6]上的最小值为f2(6)=ea-5…15分
综上所述,函数g(x)在x∈[1,6]上的最小值为
1,1≤a≤
7
2
e2-a,-2≤a≤0
e3-3a,a<-2或0<a<1
e,
7
2
<a≤6
ea-5,a>6
…16分
点评:本题考查函数最值的运用,考查恒成立问题,考查分类讨论的数学思想,难度大,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•盐城二模)若命题“?x∈R,x2-ax+a≥0”为真命题,则实数a的取值范围是
[0,4]
[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)已知集合P={-1,m},Q={x|-1<x<
34
}
,若P∩Q≠∅,则整数m=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)设△ABC的内角A,B,C的对边长分别为a,b,c,且b2=
1
2
ac

(1)求证:cosB≥
3
4

(2)若cos(A-C)+cosB=1,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)设f(x)是定义在R上的可导函数,且满足f(x)+xf′(x)>0.则不等式f(
x+1
)>
x-1
f(
x2-1
)
的解集为
{x|1≤x<2}
{x|1≤x<2}

查看答案和解析>>

同步练习册答案