精英家教网 > 高中数学 > 题目详情
3.设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,$\overrightarrow{a}$=(2,1),$\overrightarrow{a}$+2$\overrightarrow{b}$=(4,5),则sinθ=$\frac{3}{5}$.

分析 利用向量数量积的坐标运算、向量夹角公式即可得出.

解答 解:∵$\overrightarrow{a}$=(2,1),$\overrightarrow{a}$+2$\overrightarrow{b}$=(4,5),
∴$\overrightarrow{b}$=(1,2),
∴$\overrightarrow{a}•\overrightarrow{b}$=2+2=4,$|\overrightarrow{a}|$=$|\overrightarrow{b}|$=$\sqrt{5}$.
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{4}{\sqrt{5}×\sqrt{5}}$=$\frac{4}{5}$.
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查了向量数量积的坐标运算、向量夹角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知y=f(x)+g(x),f(x)是正比例函数,g(x)是反比例函数,并且当x=1时,y=4;当x=2时,y=5;当x=4时,y=$\frac{17}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.考察下列每组对象:
①非常大的正整数全体;
②小于100的所有整数;
③某校2014年秋季入学的所有长头发同学;
④平面直角坐标系第一象限内的所有点;
⑤大于0且小于1的所有无理数.
其中能构成集合的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=6,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=2$,则$\overrightarrow a$和$\overrightarrow b$的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.作出函数y=x2-4|x|-5的图象,并写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=lg(3-4sin2x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC中,a=1,$C=\frac{π}{3}$.
(1)若$A=\frac{π}{4}$,求c;
(2)若△ABC的面积S=$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l丄平面α,直线m?平面β给出下列命题:
①α∥β=>l丄m;②α丄β=>l∥m;
③l∥m=>α丄β;④l丄m=>α∥β;
其中正确命题的序号是(  )
A.①②③B.②③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),若$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m的值为(  )
A.1B.4C.-4D.-1

查看答案和解析>>

同步练习册答案