精英家教网 > 高中数学 > 题目详情
设椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)的离心率e=
1
2
,右焦点F(c,0),方程ax2+bx-c=0的两个根分别为x1,x2,则点P(x1,x2)在(  )
A.圆x2+y2=2内B.圆x2+y2=2上
C.圆x2+y2=2外D.以上三种情况都有可能
∵x1+x2=-
b
a
,x1x2=-
c
a

x12+x22=(x1+x22-2x1x2=
b2+2ac
a2

e=
c
a
=
1
2
∴a=2c
b2=a2-c2=3c2
所以x12+x22=
3c2+4c2
4c2
=
7
4
<2
所以在圆内
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,A是椭圆上的一点,C,原点O到直线AF1的距离为
1
3
|OF1|

(Ⅰ)证明a=
2
b

(Ⅱ)求t∈(0,b)使得下述命题成立:设圆x2+y2=t2上任意点M(x0,y0)处的切线交椭圆于Q1,Q2两点,则OQ1⊥OQ2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的动点Q,过动点Q作椭圆的切线l,过右焦点作l的垂线,垂足为P,则点P的轨迹方程为(  )
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

-1<a<-
1
2
,则椭圆
x2
a2
+
y2
(a+1)2
=1
的离心率的取值范围是(  )

查看答案和解析>>

同步练习册答案