精英家教网 > 高中数学 > 题目详情

【题目】集合M={1,2…9}中抽取3个不同的数构成集合{a1 , a2 , a3}
(1)对任意i≠j,求满足|ai﹣aj|≥2的概率;
(2)若a1 , a2 , a3成等差数列,设公差为ξ(ξ>0),求ξ的分布列及数学期望.

【答案】
(1)解:M有9个元素,抽取3个元素,有 =84种,

对任意的i≠j,i,j∈{1 2 3} 满足|ai﹣aj|≥2的取法:

② 最小取1的: =15种,

②最小取2的: =10种,

③最小取3的: =6种,

④最小取4的: =3种,

⑤最小取5的: =1种,

故共有15+10+6+3+1=35种,

故满足|ai﹣aj|≥2的概率为


(2)解:∵若a1,a2,a3成等差数列,设公差为ξ(ξ>0),则ξ=1,2,3,4,

ξ=1即三个连续的数,有7种,ξ=2即三个连续的奇数或偶数,有5种,.ξ=3,有(1,4,7),)2,5,8),(3,6,9)3种,ξ=4只有1种(1,5,9),

故成等差数列的一共有7+5+3+1=16.

则P(ξ=1)= ,则P(ξ=2)= ,则P(ξ=3)= ,P(ξ=4)=

分布列为:

ξ

1

2

3

4

P

故E((ξ)=1× +2× +3× +4× =


【解析】(1)先求出M有9个元素,抽取3个元素的种数,在分类求出|ai﹣aj|≥2的种数,根据概率公式计算即可.(2)结合变量对应的事件和等差数列,写出变量的分布列和数学期望.
【考点精析】认真审题,首先需要了解等差数列的性质(在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,

(1)求过点M且到点P(0,4)的距离为2的直线l的方程;

(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆 相交于不同的两点.

(1)求圆的圆心坐标;

(2)求线段的中点的轨迹的方程;

(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为xkm,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的 中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B是椭圆 =1和双曲线 =1的公共顶点,其中a>b>0,P是双曲线上的动点,M是椭圆上的动点(P,M都异于A,B),且满足 =λ( )(λ∈R),设直线AP,BP,AM,BM的斜率分别为k1 , k2 , k3 , k4 , 若k1+k2= ,则k3+k4=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为 ,则下列命题是真命题的是(
A.p∧q
B.(p)∧q
C.p∧(q)
D.q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是

查看答案和解析>>

同步练习册答案