精英家教网 > 高中数学 > 题目详情

【题目】某颜料公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨,160吨和200吨,如果A产品的利润为300/吨,B产品的利润为200/吨,设公司计划一天内安排生产A产品x吨,B产品y.

(I)用x,y列出满足条件的数学关系式,并在下面的坐标系中画出相应的平面区域;

(II)该公司每天需生产A,B产品各多少吨可获得最大利润,最大利润是多少?

【答案】见解析该公司每天需生产甲产品40吨,乙产品10吨可获得最大利润,最大利润为14000.

【解析】分析:由题意得到变量x,y满足的条件即可得到所求,然后在坐标系内画出图形即可.(由题意的利润z=300x+200y,然后据线性规划的有关知识解题可得所求

详解:(I)设该公司一天安排生产甲产品x吨,乙产品y吨,则x,y满足条件的数学关系式为

画出该二元一次不等式组表示的平面区域(可行域)如下图所示.

(II)设利润为z元,由题意得z=300x+200y,

可得

平移直线,结合图形可得当直线经过可行域上的点A时,截距最大,此时z页最大.

解方程组,即

=300x+200y=14000.

答:该公司每天需生产甲产品40吨,乙产品10吨时可获得最大利润,且最大利润为14000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点(1,13),且函数对称轴方程为.

(1)求函数的解析式;

(2)设函数,求在区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(Ⅰ)试求关于的回归直线方程;

(附:回归方程

(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,

预测为何值时,小王销售一辆该型号汽车所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,均是边长为2的等边三角形,点中点,平面平面.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点的坐标为,点在抛物线上,且满足,(为坐标原点).

(1)求抛物线的方程;

(2)过点作斜率乘积为1的两条不重合的直线,且与抛物线交于两点,与抛物线交于两点,线段的中点分别为,求证:直线过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求函数的单调区间;

(2)若函数上恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数是奇函数,求实数的值;

2)若关于的方程在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.

(1)求证:AB∥平面EFGH

(2)AB4CD6,求四边形EFGH周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,若函数处的切线与函数相切,求实数的值;

(2)当时,记.证明:当时,存在,使得.

查看答案和解析>>

同步练习册答案