精英家教网 > 高中数学 > 题目详情
5.已知全集U={x|x-2≥0或x≤1},A={x|x2-4x+3>0},B=(-∞,1]∪(2,+∞),求A∩B及∁U(A∪B).

分析 先求出全集U=(-∞,1]∪[2,+∞),A=(-∞,1)∪(3,+∞),然后进行交集、并集,以及补集的运算即可.

解答 解:U={x|x-2≥0或x≤1}=(-∞,1]∪[2,+∞),A={x|x2-4x+3>0}=(-∞,1)∪(3,+∞),B=(-∞,1]∪(2,+∞);
∴A∩B=(-∞,1)∪(3,+∞),A∪B=(-∞,1]∪(2,+∞),∁U(A∪B)={2}.

点评 考查描述法、列举法表示集合,以及区间表示集合,集合的交集、并集,及补集的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若直线l1:mx+8y+1=0与l2:2x+my-1=0垂直,则m的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若6<a<10,$\frac{a}{2}$≤b≤2a,c=a+b,那么c的取值范围是(  )
A.9≤c≤18B.15<c<30C.9≤c≤30D.9<c<30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中角A,B,C对边分别为a,b,c,且满足$2asin(C+\frac{π}{6})=b$.
(Ⅰ)求A的值;
(Ⅱ)若B=$\frac{π}{4},b-a=\sqrt{2}-\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{3}$).
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“若对任意?n∈N*都有an<an+1,则数列{an}是递增数列”的逆否命题是(  )
A.若数列{an}是递减数列,则对任意n∈N*都有an≥an+1
B.若数列{an}是递减数列,则存在n∈N*都有an≥an+1
C.若数列{an}不是递增数列,则对任意n∈N*都有an≥an+1
D.若数列{an}不是递增数列,则存在n∈N*都有an≥an+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),

(1)由图中数据求a的值
(2)若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为多少?
(3)估计这所小学的小学生身高的众数,中位数(保留两位小数)及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列各式的值:
(1)27${\;}^{-\frac{2}{3}}$-(8.5)0+$\root{4}{(-3)^{4}}$;
(2)(lg2)2+lg5•lg20+lg100;
(3)已知5a=3,5b=4,求a、b,并用a,b表示log2512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.i是虚数单位,复数$\frac{i}{2+i}$=(  )
A.$\frac{-1+2i}{3}$B.$\frac{1+2i}{3}$C.$\frac{1+2i}{5}$D.$\frac{-1+2i}{5}$

查看答案和解析>>

同步练习册答案