【题目】已知函数.
(1)当时,求曲线在处的切线方程;
(2)若,使得成立,求实数的取值范围.
【答案】(1)(2)
【解析】
(1)根据导数的几何意义求出斜率,根据点斜式写出切线方程;
(2)对分,,讨论,通过导数符号得函数单调性,根据单调性求出函数的最值,再将能成立问题转化为最值,解不等式可得.
(1) 当时, ,
,
,
∴曲线在处的切线方程为,即;
(2)①当时,,
,
,不满足题意;
②当时,,
,;
在区间上单调递增,在区间上单调递减,
∴只需即可,
令 ,其中,
∴只需,
,
时, ; 时, ,
在 上单调递减,在上单调增,
当时, ,
,不满足题意,
当时,,
∴要使,只需,即;
③当时,,
在区间上单调递减,
令,得, 令
结合图像知,存在, 使得,
∴当时,,满足题意,
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线C的参数方程是,(为参数).
(1)求直线被曲线C截得的弦长;
(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运动员射击一次所得环数的分布列如下:
8 | 9 | 10 | |
0.4 | 0.4 | 0.2 |
现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为.
(1)求该运动员两次命中的环数相同的概率;
(2)求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《基础教育课程改革纲要(试行)》将“具有良好的心理素质”列入新课程的培养目标.为加强心理健康教育工作的开展,不断提高学生的心理素质,九江市某校高二年级开设了《心理健康》选修课,学分为2分.学校根据学生平时上课表现给出“合格”与“不合格”两种评价,获得“合格”评价的学生给予50分的平时分,获得“不合格”评价的学生给予30分的平时分,另外还将进行一次测验.学生将以“平时分×40%+测验分×80%”作为“最终得分”,“最终得分”不少于60分者获得学分.
该校高二(1)班选修《心理健康》课的学生的平时份及测验分结果如下:
测验分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
平时分50分人数 | 0 | 3 | 4 | 4 | 2 | ||
平时分30分人数 | 1 | 0 | 0 |
(1)根据表中数据完成如下2×2列联表,并分析是否有95%的把握认为这些学生“测验分是否达到60分”与“平时分”有关联?
选修人数 | 测验分 达到60分 | 测验分 未达到60分 | 合计 |
平时分50分 | |||
平时分30分 | |||
合计 |
(2)若从这些学生中随机抽取1人,求该生获得学分的概率.
附:,其中
0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.
(1)求袋中白球的个数;
(2)用表示甲,乙最终得分差的绝对值,求随机变量的概率分布列及数学期望E.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】规定:在桌面上,用母球击打目标球,使目标球运动,球的位置是指球心的位置,我们说球 A 是指该球的球心点 A.两球碰撞后,目标球在两球的球心所确定的直线上运动,目标球的运动方向是指目标球被母球击打时,母球球心所指向目标球球心的方向.所有的球都简化为平面上半径为 1 的圆,且母球与目标球有公共点时,目标球就开始运动,在桌面上建立平面直角坐标系,解决下列问题:
(1) 如图,设母球 A 的位置为 (0, 0),目标球 B 的位置为 (4, 0),要使目标球 B 向 C(8, -4) 处运动,求母球 A 球心运动的直线方程;
(2)如图,若母球 A 的位置为 (0, -2),目标球 B 的位置为 (4, 0),能否让母球 A 击打目标 B 球后,使目标 B 球向 (8,-4) 处运动?
(3)若 A 的位置为 (0,a) 时,使得母球 A 击打目标球 B 时,目标球 B(4, 0) 运动方向可以碰到目标球 C(7,-5),求 a 的最小值(只需要写出结果即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com