精英家教网 > 高中数学 > 题目详情
若点A(3,m)与点B(0,4)的距离为5,则m=
 
分析:本题比较简单,利用两点间距离公式直接求解即可.
解答:解:由题意知|AB|=
32+(m-4)2
=5

解得(m-4)2=16,
∴m=0或m=8.
故答案:m=0或8.
点评:本题考查两点间距离公式,解题时要注意公式的逆运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆P与定圆O1:x2+y2+4x-5=0和O2:x2+y2-4x+3=0均外切,设P点的轨迹为C.
(1)求C的方程;
(2)过点A(3,0)作直线l交曲线C于P、Q两点,交y轴于M点,若
MA
=λ1
MP
=λ2
MQ
当λ12=m时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一张画有直角坐标系的图纸折叠一次,使得点A(0,2)与点B(4,0)重合.若此时点C(7,3)与点D(m,n)重合,则m+n的值是
34
5
34
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点A(3,m)与点B(0,4)的距离为5,则m=______.

查看答案和解析>>

同步练习册答案