精英家教网 > 高中数学 > 题目详情

 已知函数,,若存在实数,当时,恒成立,则实数的最大值为       

 A. 1         B.2         C.          D.

 

【答案】

A

【解析】解:因为函数,,若存在实数,当时,恒成立,则在给定区间的最大值小于等于零即可。因此对于参数m要进行讨论得到,选A

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
-x3+ax2+bx,(x<1)
c(ex-1-1),(x≥1)
x=0,x=
2
3
处取到极值
(Ⅰ)当c=e时,方程
f(x)
x
=k
恰有三个实根,求实数k的取值范围;
(Ⅱ)若函数y=f(x)的图象上存在两点A,B使得
OA
OB
=0
(O为坐标原点),且线段AB的中点在y轴上,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1|2x-b|
是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在m,n(n>m>o)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c,若方程f(x)=x无实根,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
2
x
+6
,其中a为实常数.
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范围;
(2)已知a=
3
4
,P1,P2是函数f(x)图象上两点,若在点P1,P2处的两条切线相互平行,求这两条切线间距离的最大值;
(3)设定义在区间D上的函数y=s(x)在点P(x0,y0)处的切线方程为l:y=t(x),当x≠x0时,若
s(x)-t(x)
x-x0
>0
在D上恒成立,则称点P为函数y=s(x)的“好点”.试问函数g(x)=x2f(x)是否存在“好点”.若存在,请求出所有“好点”坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案