精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a1=1,a2=3,数列{
1
anan+1
}的前n项和为
15
31
,则n的值为(  )
A、15B、16C、17D、18
考点:数列的求和
专题:等差数列与等比数列
分析:求出数列的通项公式,利用裂项法求法数列的和,求出n即可.
解答: 解:等差数列{an}中,a1=1,a2=3,d=2,an=2n-1,
数列
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

数列{
1
anan+1
}的前n项和为
15
31

1
2
(
1
1
-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)
=
15
31

n
2n+1
=
15
31

解得n=15.
故选:A.
点评:本题考查等差数列通项公式的求法,数列求和的方法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰为2的等腰三角形,那么原平面图形的面积是(  )
A、2
B、2
2
C、4
2
D、8
2

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈(0,
π
6
)时,求函数f(x)=
cosx
1-sinx
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面之间坐标系中,已知A(-1,1),B(2,4),圆C:x2-2ax+y2-4y+a2+
51
25
=0
(1)若圆C过点A,求a的值;
(2)若圆C与直线AB相交于P,Q两点,且CP⊥CQ,求a的值;
(3)若圆C与线段AB有公共点,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲、乙两个盒子,甲盒中有2个黑球和2个红球,乙盒中有2个黑球和3个红球,从甲、乙两盒中各取一球交换.
(Ⅰ)求交换后甲盒中有2个黑球的概率;
(Ⅱ)设交换后甲盒中黑球的个数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2<x≤5},B={x|-m+1≤x≤2m-1}且B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xα,α∈{-1,
1
2
,1,2,3},若f(x)是区间(-∞,+∞)上的增函数,则α的所有可能取值为(  )
A、{1,3}
B、{
1
2
,1,2,3}
C、{1,2,3}
D、{-1,
1
2
,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,A、B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),点C坐标为(-2,0),平行四边形OAQP的面积为S.
(1)求t=
OA
OQ
+S
的最大值;
(2)若CB∥OP,求sin(2θ-
π
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2.当x∈(-2.5,3]时,函数f(x)的值域为(  )
A、{-2,-1,0,1,2}
B、{-3,-2,-1,0,1,2}
C、{-2,-1,0,1,2,3}
D、{-3,-2,-1,0,1,2,3}

查看答案和解析>>

同步练习册答案