精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|2≤2x≤4},B={x|0<log2x<2},则A∪B=(
A.[1,4]
B.[1,4)
C.(1,2)
D.[1,2]

【答案】B
【解析】解:由A中不等式变形得:21≤2x≤22

解得:1≤x≤2,即A=[1,2],

由B中不等式变形得:log21=0<log2x<2=log24,

解得:1<x<4,即B=(1,4),

则A∪B=[1,4),

故选:B.

【考点精析】关于本题考查的集合的并集运算和集合的交集运算,需要了解并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足x2+y2﹣4x+6y+4=0,则 的最小值是(
A.2 +3
B. ﹣3
C. +3
D. ﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C1:(x﹣1)2+(y+3)2=1与圆C2:(x﹣a)2+(y﹣b)2=1外离,过直线l:x﹣y﹣1=0上任意一点P分别做圆C1 , C2的切线,切点分别为M,N,且均保持|PM|=|PN|,则a+b=(
A.﹣2
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析. (ⅰ)列出所有可能的抽取结果;
(ⅱ)求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求数列{bn}的通项公式;
(2)求数列{bn3n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(
A.[ ,1]
B.[ ,1]
C.[ ]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:

等级

1

2

3

4

5

频率

0.05

m

0.15

0.35

n


(1)在抽取的20个零件中,等级为5的恰有2个,求m,n的值;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处的切线与轴平行.

(1)讨论上的单调性;

(2)设 ,证明: .

查看答案和解析>>

同步练习册答案