精英家教网 > 高中数学 > 题目详情

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;

(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

 

【答案】

(1)

(2)米,另一边长为45米时花圃占地面积取得最大值1568平方米.

【解析】

试题分析:解:由题知,又所以

(2).(当且仅当时取等号),此时另一边长为45米.

答:当米,另一边长为45米时花圃占地面积取得最大值1568平方米.

考点:函数模型的运用

点评:主要是考查了运用函数的解析式结合函数性质来求解实际中的最值,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年浙江省绍兴市高一下学期期中考试文科数学试卷(解析版) 题型:解答题

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;

(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

 

查看答案和解析>>

同步练习册答案