精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1丄底面ABC.

(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面 ABC所成的角为60°.问在线段A1C1上是否存在一点P,使得平面B1CP丄平面ACC1A1,若存在,求C1P与PA1的比值,若不存在,说明 理由.
(1)利用线面平行的判定定理来证明即可。
(2)

试题分析:(Ⅰ)证明:连接,因为AM=MB,所以MN……………2分

,
所以MN//.…………4分
(Ⅱ)作,
因为面底面
所以

以O为原点,建立如图所示空间直角坐标系,则,B(-1,0,0),C(1,0,0)
.由可求出
…………6分
设P(x,y,z),
.解得,
,.
设平面的法向量为
解得………8分
同理可求出平面的法向量.…………10分
由面平面,得,即
解得:………………12分
点评:解决这类问题的关键是利用几何性质,线面的平行和垂直的判定定理和性质定理,来加以证明,或者利用空间向量的思想,建立直角坐标系,求点的坐标,运用向量法来得到求解,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正方体中,M、N、P分别是的中点,求证:平面MNP//平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若,且,则
B.若,且,则
C.若,且,则
D.若,且,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,已知平面QBC与直线PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。

(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥(底面为正方形,顶点在底面上的射影是底面的中心)的底面边长为2,高为2,为边的中点,动点在表面上运动,并且总保持,则动点的轨迹的周长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体中,分别是的中点,则异面直线所成角的大小是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线m,n与平面α,β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则n⊥m;
③若m⊥α,m∥β,则α⊥β.
其中真命题的个数是______个

查看答案和解析>>

同步练习册答案