精英家教网 > 高中数学 > 题目详情

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.

(1) ;(2)递增区间为(1,2),递减区间为(0,1),;(3).

解析试题分析:(1)将代入,分别得到,再由点斜式得到处的切线方程为;(2)将代入得到,从而得到递增区间为(1,2),递减区间为(0,1),;(3)先将题设条件转化为在[0,1]上的最小值不大于在[1,2]上的的最小值.再得到,然后讨论的范围,又在[1,2]上最小值为.由单调性及从而得到的取值范围为.
试题解析:(1)函数的定义域为

时,
,故.
所以处的切线方程为.
(2)当时,.
故当时,;当时,.
所以函数的递增区间为(1,2),递减区间为(0,1),.
(3)由(2)知,在(1,2)上为增函数,
所以在[1,2]上的最小值为
若对于[1,2],[0,1],使成立在[0,1]上的最小值不大于在[1,2]上的的最小值.

时,在[0,1]上为增函数,与题设不符.
时,,由,得
时,在[0,1]上为减函数,.
综上所述,的取值范围为.
考点:1.导数;2.直线的方程;3.函数的单调性与最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)当时,求的单调区间
(Ⅱ)若不等式有解,求实数m的取值菹围;
(Ⅲ)定义:对于函数在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数在其公共定义域内的所有差值都大干2。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最小值.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为0,其中
(1)求的值;
(2)若对任意,有成立,求实数的最大值;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,恒成立,求实数的取值范围;
(Ⅱ)若对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数其中,曲线在点处的切线方程为
(I)确定的值;
(II)设曲线在点处的切线都过点(0,2).证明:当时,
(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若且函数在区间上存在极值,求实数的取值范围;
(2)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=+3-ax.
(1)若f(x)在x=0处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≥+ax+1在x≥时恒成立,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案