【题目】有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”;乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”,四位歌手的话只有两位是对的,则获奖的歌手是 ( )
A. 甲 B. 乙 C. 丙 D. 丁
科目:高中数学 来源: 题型:
【题目】在某篮球比赛中,根据甲和乙两人的得分情况得到如图所示的茎叶图.
(1)从茎叶图的特征来说明他们谁发挥得更稳定;
(2)用样本的数字特征验证他们谁发挥得更好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:与椭圆有且只有一个公共点.
(1)求椭圆的方程及点的坐标;
(2)设为坐标原点,直线平行于,与椭圆交于不同的两点,且与直线交于点.证明:存在实数,使得,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线l经过第二、三、四象限,则直线l的倾斜角的范围是 ( )
A. 0°≤α<90° B. 90°≤α<180°
C. 90°<α<180° D. 0°≤α<180°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有( )种
A. 72 B. 63 C. 54 D. 48
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右顶点为、,左右焦点为,其长半轴的长等于焦距,点是椭圆上的动点,面积的最大值为.
(1)求椭圆的方程;
(2)设为直线上不同于点的任意一点,若直线、分别与椭圆交于异于、的点、,判断点与以为直径的圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】育才高中为了推进新课程改革,满足不同层次学生的需求,决定在每周的周一、周三、周五的课外活动期间同时开设“茶艺”、“模拟驾驶”、“机器人制作”、“数学与生活”和“生物与环境”选修课,每位有兴趣的同学可以在任何一天参加任何一门科目.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各选修课各天的满座的概率如下表:
生物与环境 | 数学与生活 | 机器人制作 | 模拟驾驶 | 茶艺 | |
周一 | |||||
周三 | |||||
周五 |
(1)求茶艺选修课在周一、周三、周五都不满座的概率;
(2)设周三各选修课中满座的科目数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.
(1)求A∪B,(RA)∩B;
(2)若A∩C≠,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com