精英家教网 > 高中数学 > 题目详情
已知函数的导数f'(x)的图象如图所示,则f(1)=( )

A.
B.
C.
D.以上都不正确
【答案】分析:先求出函数的导函数f'(x),然后结合导函数的图象建立关系式,即可求出a的值,从而求出在x=1处的函数值.
解答:解:f'(x)=x2-2ax+(a2-1),
由导函数的图象可得
解得a=-1
∴f(x)=x3+x2,则f(1)=
故选A
点评:本题主要考查了导数运算,以及函数解析式的求解及常用方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数的导数是sinx,则f(x)可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数数学公式的导数f'(x)的图象如图所示,则f(1)=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

(16分)已知函数的导数为. 记函数 k为常数).

    (1)若函数f(x)在区间上为减函数,求的取值范围;

  (2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省常州市部分学校高三调研数学试卷(解析版) 题型:解答题

已知函数的导数为,记函数f(x)=x-kg(x)(x≥2,k为常数).
(1)若函数f(x)在区间(2,+∞)上为减函数,求k的取值范围;
(2)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案