【题目】已知函数,求证:
(1)在区间存在唯一极大值点;
(2)在上有且仅有2个零点.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)首先求出函数的导数,设,对求导,说明其单调性,再根据零点存在性定理可得在有唯一零点,从而得证;
(2)结合(1)的单调性利用零点存在性定理证明上有两个零点,当时无零点.
解:(1)因为,所以,
设,则,则当时,,
所以即在单调递减,
又,,且图像是不间断的,
由零点存在性定理可得在有唯一零点,设为.
则当时,;当时,.
所以在单调递增,在单调递减,
故在存在唯一极大值点.
(2)因为,所以,
设,则,则当时,,
所以即在单调递减,
由(1)知,在单调递增,在单调递减.
又,,所以,
又的图像是不间断的,所以存在,使得;
又当时,,所以在递减,
因,又,又的图像是不间断的,
所以存在,使得;
当时,,,所以,从而在没有零点.
综上,有且仅有2个零点.
科目:高中数学 来源: 题型:
【题目】“既要金山银山,又要绿水青山”。某风景区在一个直径为米的半圆形花圆中设计一条观光线路。打算在半圆弧上任选一点(与不重合),沿修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计。
(1)设(弧度),将绿化带的总长度表示为的函数;
(2)求绿化带的总长度的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.
①对任意的x∈[0,1],总有f(x)≥0;
②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.已知函数g(x)=x2与h(x)=2x﹣b是定义在[0,1]上的函数.
(1)试问函数g(x)是否为G函数?并说明理由;
(2)若函数h(x)是G函数,求实数b组成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(为实数.)
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线与曲线有公共点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四种说法中,
①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2,),则f(4)的值等于;
④已知向量a=(3,4),b=(2,1),b =(2,1),则向量a在向量b方向上的投影是,
其中说法正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com