【题目】在锐角三角形ABC中,9tanAtanB+tanBtanC+tanCtanA的最小值为 .
【答案】25
【解析】解:如图,不妨设CD=1,AD=m,BD=n,
∴tanA= ,tanB= ,(m>0,n>0),
∴tanC=tan(A+B)= = ,
∵tanC>0,
∴mn<1,
∴9tanAtanB+tanBtanC+tanCtanA= +( + ) ,
= + ,
≥ + ,
=( + )[mn+(1﹣mn)],
=9+4+ + ,
≥13+2
=13+12=25,当且仅当 = ,即m=n= 时取等号,
故最小值为25,
所以答案是:25 .
【考点精析】本题主要考查了基本不等式在最值问题中的应用的相关知识点,需要掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设△ABC的三个内角分别为A,B,C.向量 共线. (Ⅰ)求角C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a2﹣3a+3)ax是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)﹣f(﹣x)的奇偶性,并加以证明
(3)解不等式:loga(1﹣x)>loga(x+2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于给定的正整数k,如果各项均为正数的数列{an}满足:对任意正整数n(n>k),an﹣kan﹣k+1…an﹣1an+1…an+k﹣1an+k=an2k总成立,那么称{an}是“Q(k)数列”.
(1)若{an}是各项均为正数的等比数列,判断{an}是否为“Q(2)数列”,并说明理由;
(2)若{an}既是“Q(2)数列”,又是“Q(3)数列”,求证:{an}是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为函数y=f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)图象的一部分,其中点 是图象的一个最高点,点 是与点P相邻的图象与x轴的一个交点.
(1)求函数f(x)的解析式;
(2)若将函数f(x)的图象沿x轴向右平移 个单位,再把所得图象上每一点的横坐标都变为原来的 (纵坐标不变),得到函数y=g(x)的图象,求函数y=g(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面 是菱形, , 平面 , , , , 是 中点.
(I)求证:直线 平面 .
(II)求证:直线 平面 .
(III)在 上是否存在一点 ,使得二面角 的大小为 ,若存在,确定 的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣ +cx+d有极值.
(Ⅰ)求实数c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)< +2d恒成立,求实数d的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com