精英家教网 > 高中数学 > 题目详情
20.已知实数x满足|2x-3|-x>4,则实数x的取值范围是{x|x<-$\frac{1}{3}$,或x>7}.

分析 把要解的不等式等价转化为与之等价的2个不等式组,求出每个不等式组的解集,再取并集,即得所求.

解答 解:|2x-3|-x>4,等价于$\left\{\begin{array}{l}{x<\frac{3}{2}}\\{3-2x-x>4}\end{array}\right.$ ①或$\left\{\begin{array}{l}{x≥\frac{3}{2}}\\{2x-3-x>4}\end{array}\right.$ ②.
解①求得x<-$\frac{1}{3}$;解②求得x>7,故原不等式的解集为{x|x<-$\frac{1}{3}$,或x>7},
故答案为:{x|x<-$\frac{1}{3}$,或x>7}.

点评 本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知两点A(3,0),B(0,4),动点P(x,y)在线段AB上运动,则xy(  )
A.无最小值且无最大值B.无最小值但有最大值
C.有最小值且无最大值D.有最小值且有最大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知非零实数a,b满足|2a-4|+|b+2|+$\sqrt{(a-3){b}^{2}}$+4=2a,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l的方程是y=k(x-1)-2,若点P(-3,0)在直线l上的射影为H,O为坐标原点,则|OH|的最大值是(  )
A.5+$\sqrt{2}$B.3+2$\sqrt{2}$C.$\sqrt{5}+\sqrt{2}$D.$\sqrt{3}+3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设关于x的一元二次方程anx2-an+1x+1=0(n∈N*)有两根α和β,且满足6α-2αβ+6β=3.
(Ⅰ)试用an表示an+1
(Ⅱ)求证:数列$\left\{{{a_n}-\frac{2}{3}}\right\}$是等比数列;
(Ⅲ)当a1=$\frac{7}{6}$时,求数列{an}的通项公式,并求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若p:φ=$\frac{π}{2}$+kπ,k∈Z,q:f(x)=sin(ωx+φ)(ω≠0)是偶函数,则p是q的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式|x-a|<b的解集是{x|-3<x<9},则a,b的值分别是(  )
A.a=3,b=6B.a=-3,b=9C.a=6,b=3D.a=-3,b=6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,设m为实数,若双曲线x2-my2=1的焦点到渐近线的距离为$\sqrt{2}$,则m的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x-alnx(a∈R)
(1)当a=1时,求函数f(x)在(1,f(1)处的切线方程;
(2)记g(x)=x2-f(x).若函数g(x)有两个极值点x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案