精英家教网 > 高中数学 > 题目详情

【题目】一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

1)通过画散点图,发现可用线性回归模型拟合的关系,请用相关系数加以说明;

2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001

附注:①参考数据:.

②参考公式:相关系数.

【答案】1)见解析;(2)①3.386(万元)

【解析】

1)利用代入数值,求出后即可得解;

2)①计算出后,利用求出后即可得解;

②把代入线性回归方程,计算即可得解.

1)由已知条件得,

,∴

说明正相关,且相关性很强.

2)①由已知求得

所以,所求回归直线方程为.

②当时,(万元),

此时产品的总成本约为3.386万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆E经过椭圆C)的左右焦点,与椭圆C在第一象限的交点为A,且EA三点共线.

1)求椭圆C的方程;

2)是否存在与直线O为原点)平行的直线l交椭圆CMN两点.使,若存在,求直线l的方程,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数),曲线的直角坐标方程为,将曲线上的点向下平移1个单位,然后横坐标伸长为原来的2倍,纵坐标不变,得到曲线

1)求曲线和曲线的直角坐标方程;

2)若曲线和曲线相交于两点,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,.

1)证明:平面

2)若中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的长轴是短轴的两倍,点在椭圆上.不过原点的直线与椭圆相交于两点,设直线的斜率分别为,且恰好构成等比数列,

1)求椭圆的方程;

2)试判断是否为定值?若是,求出这个值;若不是,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的极值;

2)若对任意,均有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将所有平面向量组成的集合记作是从的对应关系,记作,其中都是实数,定义对应关系的模为:在的条件下的最大值记作,若存在非零向量,及实数使得,则称的一个特殊值;

1)若,求

2)如果,计算的特征值,并求相应的

3)若,要使有唯一的特征值,实数应满足什么条件?试找出一个对应关系,同时满足以下两个条件:①有唯一的特征值,②,并验证满足这两个条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).

1)应收集多少位女生的样本数据?

2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,估计该校学生每周平均体育运动时间超过4小时的概率;

3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有的把握认为该校学生的毎周平均体育运动时间与性别有关”.

男生

女生

总计

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

总计

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了预测下月产品销售情况,找出了近7个月的产品销售量(单位:万件)的统计表:

月份代码

1

2

3

4

5

6

7

销售量(万件)

但其中数据污损不清,经查证.

(1)请用相关系数说明销售量与月份代码有很强的线性相关关系;

(2)求关于的回归方程(系数精确到0.01);

(3)公司经营期间的广告宣传费(单位:万元)(),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)

参考公式及数据:,相关系数,当时认为两个变量有很强的线性相关关系,回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

同步练习册答案