精英家教网 > 高中数学 > 题目详情

【题目】是定义在R上的两个函数,满足 满足,且当时,.若在区间上,关于的方程8个不同的实数根,则k的取值范围是______

【答案】

【解析】

由题可得是周期为4的函数,是周期为2的函数,转化方程有8个不同的实数根为内有8个交点,利用函数图像求解即可

由题,,所以的周期为

因为,的周期为2

时,,的图像为以为圆心,半径为1的在轴上方的半圆;由,则当,是以为圆心, 半径为1的在轴下方的半圆,

由周期性画出部分图像,如图所示,时与内有2个交点,

因为关于的方程8个不同的实数根,时与内需有6个交点,

①令与圆相切,此时有一个交点,则,则(与上半圆相切)或(与下半圆相切);

②令,此时有2个交点,;令,此时有2个交点,

假设在时有2个交点,与圆的上半圆有2个交点,,由函数的周期性,则在内有6个交点;

时,图像为圆的下半圆向右平移2个单位得到,则当,与圆的下半圆有2个交点,的周期为2,则当,也有2个交点,同理,则在内有6个交点;

综上,

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%,现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

2)现在要从年龄较大的第45组中用分层抽样的方法抽取8人,再从这8人中随机抽取3人进行问卷调查,求第4组恰好抽到2人的概率;

3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注交通道路安全的人数为随机变量X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,经过点的直线与椭圆相交于两点,点为线段的中点,点为坐标原点.当直线的斜率为时,直线的斜率为.

1)求椭圆的标准方程;

2)若点为椭圆的左顶点,点为椭圆的右顶点,过的动直线交该椭圆于两点,记的面积为的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E的焦点重合,斜率为k的直线l交抛物线EAB两点,交椭圆CD两点.

(1)求椭圆的方程;

(2)直线l经过点,设点,且的面积为,求k的值;

(3)若直线l过点,设直线的斜率分别为,且成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为整数,其前n项和为.规定:若数列满足前r项依次成公差为1的等差数列,从第项起往后依次成公比为2的等比数列,则称数列为“r关联数列”.

(1)若数列为“6关联数列”,求数列的通项公式;

(2)在(1)的条件下,求出,并证明:对任意

3)若数列为“6关联数列”,当,之间插入n个数,使这个数组成一个公差为的等差数列,求,并探究在数列中是否存在三项其中mkp成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.四棱柱的底面是直角梯形,,四边形均为正方形.

1)证明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列,,满足:对任意的,都有=,=,=.记=(表示个实数,,中的最大值).

(1)若=,=,=,求,,的值;

(2)若=,=,求满足=的所有值;

(3)设,,是非零整数,且,,互不相等,证明:存在正整数,使得数列,,中有且只有一个数列自第项起各项均为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线上的两点,线段的中点为,直线不经过坐标原点

1)若直线和直线的斜率都存在且分别为,求证:

2)若双曲线的焦点分别为,点的坐标为,直线的斜率为,求由四点所围成四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ4cosθ,直线C2的参数方程为t为参数).

1)求曲线C1的直角坐标方程和直线C2的普通方程;

2)若P10),直线C2与曲线C1相交于AB两点,求|PA||PB|的值.

查看答案和解析>>

同步练习册答案