精英家教网 > 高中数学 > 题目详情
如图,菱形的边长为6,,.将菱形沿对角线折起,得到三棱锥 ,点是棱的中点,.

(1)求证:
(2)求三棱锥的体积.
(1)本题关键是证明平面 (2)

试题分析:(1) 证明:由题意,,
因为,所以.
又因为菱形,所以
因为,所以平面,       
因为平面,所以平面平面.      
(2)解:三棱锥的体积等于三棱锥的体积.  
由(1)知,平面
所以为三棱锥的高.        
的面积为
所求体积等于.      
点评:在立体几何中,常考的定理是:直线与平面垂直的判定定理、直线与平面平行的判定定理。当然,此类题目也经常要我们求出几何体的体积和表面积。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直角梯形边上的中点(如图甲),,将沿折到的位置,使,点上,且(如图乙)

(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱中, 上的点且边上的高.
(Ⅰ)求证:平面
(Ⅱ)求证:
(Ⅲ)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,

(I)求证
(II)设

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形中(图1),中点为,将图1沿直线折起,使二面角(图2)
 
(1)过作直线平面,且平面=,求的长度。
(2)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知多面体中,⊥平面⊥平面 ,的中点.

(1)求证:⊥平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则线段的中点的坐标为         (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下图是由哪个平面图形旋转得到的(   )

A.           B.         C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆锥的底面半径为,高为,则圆锥的侧面积是      

查看答案和解析>>

同步练习册答案