精英家教网 > 高中数学 > 题目详情

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2(1)PD.

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.

(1)详见解析;(2)

解析试题分析:(1)要证明两个平面垂直,一种方法是只需在一个平面内找另一个平面的一条垂线:另一种方法是可利用若,则,由题可知,则,再证明,则,从而平面⊥平面;(2)求二面角大小,可建立适当的空间直角坐标系(需在图中找两两相交且垂直的三条直线,先求两个半平面的法向量的夹角,从而可确定二面角的大小.
试题解析:(1)∵,∴,又,所以,∴,在直角梯形中,设,则,所以,又,所以,又,∴平面⊥平面
(2)法一)由(1)知两两垂直,故以为坐标原点,的方向分别为轴,建立空间直角坐标系

,则,设面的法向量,则
,令,∴,面的法向量,设的夹角为,所以,所以二面角的余弦值为.
法二)由(1)知,∴就是二面角的平面角,在,所以.
考点:1、面面垂直的判定;2、二面角的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.

(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=

(I)若M为PA中点,求证:AC∥平面MDE;
(II)求直线PA与平面PBC所成角的正弦值;
(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置,并证明,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面是正方形,,且分别是线段的中点.

(1)求证:平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知如图,平行四边形中,,正方形所在平面与平面垂直,分别是的中点。

⑴求证:平面
⑵求平面与平面所成的二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形均为全等的直角梯形,且.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案