精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足a1=1,an+1=
(Ⅰ)求证:an+1<an
(Ⅱ)求证: ≤an

【答案】解:(Ⅰ)证明:由a1=1,an+1= ,得an>0,(n∈N), 则an+1﹣an= ﹣an= <0,
∴an+1<an
(Ⅱ)证明:由(Ⅰ)知0<an<1,又an+1= .,∴ = ,即an+1 an
∴an an1≥( 2an1≥…≥( 2an1≥( n1a1= ,即an
由an+1= ,则 =an+
=an
=a1=1, =a2= =a3=( 2 =an1≥( n2
累加得 =1+ +( 2+…+( n2= =2﹣( n2
而a1=1,
≥3﹣( n2= =
∴an
综上得 ≤an
【解析】(Ⅰ)由an>0,则做差an+1﹣an= ﹣an= <0,即可证明an+1<an;(Ⅱ)由an+1 an , an an1≥( 2an1≥…≥( 2an1≥( n1a1= ,则an .由 =an , 采用“累加法”即可求得 ≥3﹣( n2= = ,即可求得 ≤an

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研小组研究发现:一棵水果树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系: .此外,还需要投入其它成本(如施肥的人工费等)百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为(单位:百元).

(1)求的函数关系式;

当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(t,t),点M是圆O1:x2+(y﹣1)2= 上的动点,点N是圆O2:(x﹣2)2+y2= 上的动点,则|PN|﹣|PM|的最大值是(
A.1
B. ﹣2
C.2+
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: + =1(a>b>0)的离心率e= ,过点(0,﹣b),(a,0)的直线与原点的距离为 ,M(x0 , y0)是椭圆上任一点,从原点O向圆M:(x﹣x02+(y﹣y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记直线OP,OQ的斜率分别为k1 , k2 , 试求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f ( x)=ax3+bx2+cx+d 的图象如图所示,则 的取值范围是(
A.(﹣ ?)
B.(﹣ ,1)
C.(﹣
D.(﹣ ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一组合几何体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求证:AC⊥平面PDB;
(II)求四棱锥B﹣CEPD的体积;
(III)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为y=kx+b(其中k的值与b无关),圆M的方程为x2+y2﹣2x﹣4=0.
(1)如果不论k取何值,直线l与圆M总有两个不同的交点,求b的取值范围;
(2)b=1,l与圆交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)已知点,曲线在点 处的切线与直线交于点,求为坐标原点)的面积最小时的值,并求出面积的最小值.

查看答案和解析>>

同步练习册答案