精英家教网 > 高中数学 > 题目详情

【题目】若函数是自然对数的底数)在的定义域上单调递增,则称函数具有性质.下列函数中所有具有性质的函数的序号为(

A.B.C.D.

【答案】AD

【解析】

利用指数函数的性质与导数知识逐一判断新函数的单调性即可.

解:对于Afx)=2x,则gx)=exfx)=ex2x=(x为实数集上的增函数;

对于Bfx)=3x,则gx)=exfx)=ex3x=(x为实数集上的减函数;

对于Cfx)=x3,则gx)=exfx)=exx3

g′(x)=exx3+3exx2exx3+3x2)=exx2x+3),当x<﹣3时,g′(x)<0

gx)=exfx)在定义域R上先减后增;

对于Dfx)=x2+2,则gx)=exfx)=exx2+2),

g′(x)=exx2+2+2xexexx2+2x+2)>0在实数集R上恒成立,

gx)=exfx)在定义域R上是增函数.

故选:AD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆的离心率为,过椭圆的左焦点,且斜率为的直线,与以右焦点为圆心,半径为的圆相切.

1)求椭圆的标准方程;

2)线段是椭圆过右焦点的弦,且,求的面积的最大值以及取最大值时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽《九章算术商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱载堉(1536—1611),明太祖九世孙,音乐家、数学家、天文历算家,在他多达百万字的著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子。他对文艺的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”。“十二平均律”是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第二个音的频率为,第八个音的频率为,则等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在三棱锥PABCPA⊥平面ABCD是棱PB的中点已知PA=BC=2,AB=4,CBAB则异面直线PCAD所成角的余弦值为

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,将沿直线翻折成,连结的中点,则在翻折过程中,下列说法中所有正确的是(

A.存在某个位置,使得

B.翻折过程中,的长是定值

C.,则

D.,当三棱锥的体积最大时,三棱锥的外接球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,定义函数,给出下列命题:①;②函数是奇函数;③当时,若,总有成立,其中所有正确命题的序号是( )

A.B.①②C.D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,函数,其中为常数,且,令函数为函数的积函数.

1)求函数的表达式,并求其定义域;

2)当时,求函数的值域

3)是否存在自然数,使得函数的值域恰好为?若存在,试写出所有满足条件的自然数所构成的集合;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案