精英家教网 > 高中数学 > 题目详情
19.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是双曲线C的右支上的点,射线PQ平分∠F1PF2交x轴于点Q,过原点O作PQ的平行线交PF1于点M,若|MP|=$\frac{1}{4}$|F1F2|,则C的离心率为(  )
A.$\frac{3}{2}$B.3C.2D.$\sqrt{3}$

分析 运用极限法,设双曲线的右顶点为A,考察特殊情形,当点P→A时,射线PT→直线x=a,此时PM→AO,即|PM|→a,结合离心率公式即可计算得到.

解答 解:设双曲线的右顶点为A,
考察特殊情形,当点P→A时,射线PT→直线x=a,
此时PM→AO,即|PM|→a,
特别地,当P与A重合时,|PM|=a.
由|MP|=$\frac{1}{4}$|F1F2|=$\frac{1}{2}$c,
即有a=$\frac{1}{2}$c,
由离心率公式e=$\frac{c}{a}$=2.
故选:C.

点评 本题考查双曲线的定义、方程和性质,主要考查离心率的求法,注意极限法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是(  )
A.至少有一个白球;至少有一个红球B.至少有一个白球;红、黑球各一个
C.恰有一个白球;一个白球一个黑球D.至少有一个白球;都是白球

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要把半径为半圆形木料截成长方形,为了使长方形截面面积最大,则图中的α=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设有序集合对(A,B)满足:A∪B={1,2,3,4,5,6,7,8},A∩B=∅,记CardA,CardB分别表示集合A、B的元素个数,则符合条件CardA∉A,CardB∉B的集合的对数是44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在区间[-1,1]上随机取一个数x,x2的值介于0到$\frac{1}{4}$之间的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x∈R,则“1<x<3”是“|x-2|<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若五个数1、2、3、4、a的平均数为4,则这五个数的方差为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a、b、c∈R,a>b>c,a+b+c=0,若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤4}\\{bx+ay+c≥0}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最大值,无最小值B.无最大值,有最小值
C.有最大值,有最小值D.无最大值,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设方程f(x,y)=0的解集非空.如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,有下面5个命题:
①坐标满足f(x,y)=0的点都不在曲线C上;
②曲线C上的点的坐标都不满足f(x,y)=0;
③坐标满足f(x,y)=0的点不都在曲线C上;
④一定有不在曲线C上的点,其坐标满足f(x,y)=0;
⑤坐标满足f(x,y)=0的点有些在曲线C上,有些不在曲线C上.
则上述命题正确的是③④.(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案