精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=lnx+ax,若存在x0∈(0,+∞),使f(x0)>0,则a的取值范围是(-$\frac{1}{e}$,+∞).

分析 求出函数的导数,通过讨论a的范围,确定函数的单调性,求出f(x)的最大值,得到关于a的不等式,解出即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$+a=$\frac{1+ax}{x}$,
a≥0时,f′(x)>0,f(x)在(0,+∞)递增,f(1)=a≥0,
故存在x0∈(0,+∞),使f(x0)>0,
a<0时,令f′(x)>0,解得:0<x<-$\frac{1}{a}$,
令f′(x)<0,解得:x>-$\frac{1}{a}$,
∴f(x)在(0,-$\frac{1}{a}$)递增,在(-$\frac{1}{a}$,+∞)递减,
∴f(x)max=f(-$\frac{1}{a}$)=ln(-$\frac{1}{a}$)-1>0,解得:a>-$\frac{1}{e}$,
综上,a的范围是(-$\frac{1}{e}$,+∞),
故答案为:(-$\frac{1}{e}$,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某高校数学系2016年高等代数试题有6个题库,其中3个是新题库(即没有用过的题库),3个是旧题库(即至少用过一次的题库),每次期末考试任意选择2个题库里的试题考试.
(1)设2016年期末考试时选到的新题库个数为ξ,求ξ的分布列和数学期望;
(2)已知2016年时用过的题库都当作旧题库,求2017年期末考试时恰好到1个新题库的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的公差d=2,前n项和为Sn,等比数列{bn}满足b1=a1,b2=a4,b3=a13
(1)求an,bn
(2)记数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC的内角A,B,C的对边分别是a,b,c,若B=2A,a=1,b=$\sqrt{3}$,则角B=(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有矩形铁板,其长为6,宽为4,需从四个角上剪掉边长为 x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则 x 等于(  )
A.$\frac{5-\sqrt{7}}{3}$B.$\frac{5+\sqrt{7}}{3}$C.$\frac{7-\sqrt{5}}{3}$D.$\frac{7+\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.椭圆$\frac{x^2}{8}+\frac{y^2}{6}$=1上存在n个不同的点P1,P2,…,Pn,椭圆的右焦点为F.数列{|PnF|}是公差大于$\frac{1}{5}$的等差数列,则n的最大值是(  )
A.16B.15C.14D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知θ∈(0,π),且sinθ,cosθ是关于x的方程 5x2-x+m=0的根,求sinθ•cosθ和sin3θ+cos3θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知$\overrightarrow{m}$=(2b,1).$\overrightarrow{n}$=(ccosA+acosC,cosA),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角A的值;
(2)若b,a,c成等比数列.且△ABC的外接圆半径R=$\sqrt{3}$.试求△ABC的内切圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{y^2}{3}-\frac{x^2}{6}=1$的一个焦点坐标为(  )
A.(3,0)B.(0,3)C.$(\sqrt{3},0)$D.$(0,\sqrt{3})$

查看答案和解析>>

同步练习册答案