精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)如果三棱锥的体积为3,求.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.第一问,根据已知条件,取中点,连结,得出,再利用,根据线面垂直的判定证出平面,从而得到垂直平面内的线,再利用为中位线,得出平面,最后利用面面垂直的判定证明平面垂直平面;第二问,根据已知进行等体积转换,利用三棱锥的体积公式列出等式,解出的值.
试题解析:(Ⅰ)取中点为,连结
因为,所以
,所以平面
因为平面,所以.        3分
由已知,,又,所以
因为,所以平面
平面,所以平面⊥平面.      5分
(Ⅱ)由(Ⅰ)知,平面
,因为的中点,所以
,      10分
解得,即.        12分
考点:1.线面垂直的判定和性质;2.面面垂直的判定;3.锥体的体积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥面CBB1.

(1)证明:DE∥面ABC;
(2)求四棱锥C­ABB1A1与圆柱OO1的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。

(1)设平面ABE与平面ACD的交线为直线,求证:∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.

(Ⅰ)求证:EG//平面ABF;
(Ⅱ)求三棱锥B-AEG的体积;
(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,, 沿平面把这个长方体截成两个几何体: 几何体(1);几何体(2)

(I)设几何体(1)、几何体(2)的体积分为是,求的比值
(II)在几何体(2)中,求二面角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在三棱柱中,侧面为矩形,的中点,交于点侧面.

(1)证明:
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若,PB与底面ABC成60°角,分别是的中点,是线段上任意一动点(可与端点重合),求多面体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是正方形,平面分别为的中点,且.

(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

同步练习册答案