精英家教网 > 高中数学 > 题目详情
正四棱锥P-ABCD的所有棱长都相等,则侧棱与底面所成的角为           .

试题分析:根据题意,由于正四棱锥P-ABCD的所有棱长都相等,可知顶点在底面的射影为底面的中心,则可知侧棱长假设为2
高为 ,则可知侧棱与底面所成的角的正弦值为 ,故可知角为
点评:解决的关键是根据线面角的定义,作出顶点在底面的射影,然后得到线面角,求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是空间中互不相同的直线,是不重合的两平面,则下列命题中为真命题的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是均以为斜边的等腰直角三角形,分别为的中点,的中点,且平面.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一点P,使得DP与平面ACB1平行?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.

(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱锥S—ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD为平行四边形,BC⊥平面ABEAEBEBE = BC = 1,AE = M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:MNEA
(2)求四棱锥MADNP的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条不重合的直线,是三个两两不重合的平面,给出下列四个命题:
①若m,m,则; ②若
③若m//,n //,m//n 则// ④若m,m//,则
其中真命题是(   )
A.①和②B.①和③C.③和④D.①和④

查看答案和解析>>

同步练习册答案