精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若的极小值为,求实数的值;

2)讨论函数的零点的个数.

【答案】12)答案见解析

【解析】

1)因为,故 ,根据的极小值为,讨论在不同范围内单调性,即可求得答案;

2,可得,讨论在不同范围内单调性,即可求得答案.

1

①当单增,单减,单增,

的极小值为

解得或者(舍去);

②当时,单增,无极小值;

③当时,单增,单减,单增,

的极小值为

解得(舍去);

综上所述,

2

时,单增,单减,

①当时,即时,无零点;

②当时,即时,有一个零点;

③当时,即时,

时,

时,

有两个零点;

时,即时,

单增,单减,单增,

,当时,

有一个零点;

时,即时,单增,

,当时,

有一个零点;

时,即时,

单增,单减,单增,

时,,所以有一个零点;

综上,当时,没有零点

时,有一个零点;

时,有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下四个命题:①命题“若”的逆否命题为“若,则”;②“”是“”的充分不必要条件; ③若为假命题,则均为假命题;④对于命题使得,则,均有.其中,真命题的个数是 ( )

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,过点的直线l的参数方程为t为参数),lC交于AB两点.

1)求C的直角坐标方程和l的普通方程;

2)若成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在内的人数为92.

1)估计这些党员干部一周参与主题教育活动的时间的平均值;

2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在内的党员干部给予奖励,且参与时间在内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象在处的切线为为自然对数的底数)

(1)求的值;

(2)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,;

若函数上存在零点,求a的取值范围;

设函数,,当时,若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示.

1)求的值;

2)求地区200家实体店该品牌洗衣机的月经济损失的众数以及中位数;

3)不经过计算,直接给出地区200家实体店经济损失的平均数6000的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.

1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);

2)如果,并且,试分别求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数处取得极值,求实数的值;并求此时上的最大值;

()若函数不存在零点,求实数a的取值范围;

查看答案和解析>>

同步练习册答案