【题目】已知椭圆的左焦点为,离心率为.
(1)求椭圆的标准方程;
(2)设为坐标原点,为直线上一点,过作的垂线交椭圆于、.当四边形是平行四边形时,求四边形的面积.
【答案】(1);(2).
【解析】
(1)由焦点坐标和离心率及、、之间的关系求出、的值,进而可得椭圆的标准方程;
(2)由题意设的坐标为,由(1)得左焦点的坐标,可得直线的斜率,由题意可得的方程,将直线与椭圆的方程联立求出两根之和,运用韦达定理求得,再由四边形是平行四边形,可得,由此求出的值,从而可得的长,进而求出四边形的面积.
(1)由已知得:,,所以,又,解得,
所以椭圆的标准方程为:;
(2)设点的坐标为,则直线的斜率,
当时,直线的斜率,直线的方程是;
当时,直线的方程也符合的形式.
由,得(*),其判别式,
设、,则,,
因为四边形是平行四边形,所以,即,
所以,解得,
此时,方程(*)为,得,则.
此时的面积.
科目:高中数学 来源: 题型:
【题目】数列的前项和为,若存在正整数,且,使得,同时成立,则称数列为“数列”.
(1)若首项为,公差为的等差数列是“数列”,求的值;
(2)已知数列为等比数列,公比为.
①若数列为“数列”,,求的值;
②若数列为“数列”,,求证:为奇数,为偶数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体中,点M是对角线上的点(点M与A、不重合),则下列结论正确的个数为( )
①存在点M,使得平面平面;
②存在点M,使得平面;
③若的面积为S,则;
④若、分别是在平面与平面的正投影的面积,则存在点M,使得.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体 ,如图.
1若,证明:平面;
2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥C﹣ABNM中,四边形ABNM的边长均为2,△ABC为正三角形,MB,MB⊥NC,E,F分别为MN,AC中点.
(Ⅰ)证明:MB⊥AC;
(Ⅱ)求直线EF与平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(k为常数,且).
(1)在下列条件中选择一个________使数列是等比数列,说明理由;
①数列是首项为2,公比为2的等比数列;
②数列是首项为4,公差为2的等差数列;
③数列是首项为2,公差为2的等差数列的前n项和构成的数列.
(2)在(1)的条件下,当时,设,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com