精英家教网 > 高中数学 > 题目详情
(2009•烟台二模)设非负实数x、y满足不等式组
2x+y-4≤0
x+y-3≤0

(1)如图在所给的坐标系中,画出不等式组所表示的平面区域;
(2)求k=x+3y的取值范围;
(3)在不等式组所表示的平面区域内,求点(x,y)落在x∈[1,2]区域内的概率.
分析:(1)先根据约束条件非负实数x、y满足不等式组
2x+y-4≤0
x+y-3≤0
画出可行域;
(2)再利用几何意义求最值,只需求出直线k=x+3y过点A点或B点时,z取得最值即可;
(3)根据不等式组画出平面区域,求出区域的面积,以及落在x∈[1,2]区域内的面积,最后利用几何概型的概率公式解之即可.
解答:解:(1)不等式组
2x+y-4≤0
x+y-3≤0
x≥0
y≥0
所表示的平面区域,如下图示:
(2)当直线k=x+3y过点(0,0)时,k最小值为0.
当直线k=x+3y过点A(0,3)时,k最大值为9.
故k=x+3y的取值范围为:[0,9].
(3)面积S=
1
2
×(3+2)×1+
1
2
×2×1=
7
2

其中落在x∈[1,2]区域内的面积为1
故点(x,y)落在x∈[1,2]区域内的概率P=
1
7
2
=
2
7
点评:本题考查画可行域及由可行域求目标函数最值问题,考查了二元一次不等式(组)与平面区域,以及几何概型的概率,同时考查了画图能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•烟台二模)已知f(x)=
(3-a)x-4a,x<1
logax,x≥1
是(-∞,+∞)上的增函数,那么a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)函数f(x)=sin(ωx+?)(ω>0,|?|<
π
2
)的最小正周期为π,且其图象向右平移
π
12
个单位后得到的函数为奇函数,则函数f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知函数f(x)是R上的偶函数,且f(1-x)=f(1+x),当x∈[0,1]时,f(x)=x2,则函数y=f(x)-log7x 的零点个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知函数f(x)=gx-x (g为自然对数的底数).
(1)求f(x)的最小值;
(2)设不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2
},且M∩P≠∅,求实数a的取值范围;
(3)已知n∈N+,且S n=
n
0
f(x)dx
,是否存在等差数列{an}和首项为f(1)公比大于0的等比数列{bn},使得Sn=
n
k=1
(ak+bk)
?若存在,请求出数列{an},{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如下,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案