精英家教网 > 高中数学 > 题目详情

【题目】某学校为了解该校教师对教工食堂的满意度情况,随机访问了名教师.根据这名教师对该食堂的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为: ,…, .

(1)求频率分布直方图中的值;

(2)从评分在的受访教师中,随机抽取2人,求此2人的评分都在的概率.

【答案】(1);(2).

【解析】试题分析:(1)根据频率分布直方图的性质可知各频率之和为1即可得a=0.022;(2)先计算出受访教师中评分在[50,60)的人数:50×0.006×10=3(人),然后列出所有组合可能即可

解析:(1)因为(0.004+0.006+0.018+a×2+0.028)×10=1,

所以a=0.022

(2)受访教师中评分在[50,60)的有:

50×0.006×10=3(人),记为A1,A2,A3

受访教师中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2…8分

从这5名受访教师中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}.

又因为所抽取2人的评分都在[50,60)的结果有3种,即{A1,A2},{A1,A3},{A2,A3},故所求的概率为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=
(1)当m=4时,求函数f(x)的定义域M;
(2)当a,b∈RM时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是椭圆上的一点,F1,F2是椭圆的两个焦点

1∠F1PF2=60°时,求△F1PF2的面积;

2∠F1PF2为钝角时,求点P横坐标的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin(2x),x[],求(1)函数f(x)单调区间;(2)f(x)最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,正方形所在的平面与正三角形ABC所在的平面互相垂直, ,且 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是数学中重要的概念之一,同学们在初三、高一分别学习过,也知晓其发展过程.1692年,德国数学家莱布尼茨首次使用function这个词,1734年瑞士数学家欧拉首次使用符号f(x)表示函数.1859年我国清代数学家李善兰将function译作函数,意味着信件,巧妙地揭示了对应关系.密码学中的加密和解密其实就是函数与反函数.对自变量恰当地赋值是处理函数问题,尤其是处理抽象函数问题的常用方法之一.请你解答下列问题.

已知函数f(x)满足对任意的整数ab均有f(a+b)=f(a) +f(b)+ab+2,且f(-2)=-3.f(96)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=-3x2+a6-ax+6.

1解关于a的不等式f1>0;

2若不等式fx>b的解集为-1,3,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题:

①“”是“”的充分不必要条件;

②命题“若 ,则 ”的逆否命题为“若 ,则

③对于命题 ,使得 ,则 ,均有

④若 “ 为假命题,则 均为假命题;

其中正确命题的序号为_______________(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

同步练习册答案