精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|x2-x-6≤0},B={x|x>1},则A∩B=(  )
A.[-2,3]B.(1,3]C.(1,3)D.(1,2]

分析 先解出集合A,由(x+2)(x-3)≤0得出A={x|-2≤x≤3},再确定A∩B即可.

解答 解:对于集合A,由x2-x-6≤0得,
所以,(x+2)(x-3)≤0,
解得,x∈[-2,3],
即A={x|-2≤x≤3},而B={x|x>1},
所以,A∩B={x|1<x≤3},
故答案为:B.

点评 本题主要考查了交集及其运算,涉及一元二次不等式的解法和集合的表示,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.化简:$\frac{cos(α+2π)•tan(α+π)}{sin(α-2π)}$得(  )
A.1B.-1C.sin2αD.cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x+1)定义域是[2,3],求f(x2+2)定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(-2,5),|$\overrightarrow{b}$|=2|$\overrightarrow{a}$|,若$\overrightarrow{b}$与$\overrightarrow{a}$共线且反向,则$\overrightarrow{b}$=(4,-10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费+年均维修费),设某种汽车的购车的总费用为50000元;使用中每年的保险费、养路费及汽油费合计为6000元;前x年的总维修费y满足y=ax2+bx,已知第一年的维修费为1000元,前二年总维修费为3000元,这这种汽车的最佳使用年限为(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}{x^2}$+|x+1-2a|,其中a是实数.
(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)当x∈[-1,1]时,f(x)的最小值为$\frac{1}{2}{a^2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出平面区域如图所示,其中A(1,1),B(2,5),C(4,3)若使目标函数z=ax-y仅在点C处取得最大值,则a的取值范围是$({\frac{2}{3},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.等差数列{an}中,a2=3,a3+a4=9,则a1a6=14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]
(Ⅰ)求频率分布图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)求出本次评分的众数、中位数、平均数.

查看答案和解析>>

同步练习册答案