精英家教网 > 高中数学 > 题目详情

【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验960.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血就只需检验一次(这时认为每个人的血化验);否则,若呈阳性,则需对这个人的血样再分别进行一次化验.这样,该组个人的血总共需要化验.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.

1)设方案②中,某组个人中每个人的血化验次数为,求的分布列;

2)设.试比较方案②中,分别取234时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).

【答案】1)分布列见解析;(2)见解析.

【解析】

(1)易得可能的取值为,再求分布列即可.

(2)根据(1)中的分布列,分别求得时的数学期望,再分析三种情况下需要化验的总次数,从而得到最多可以减少的次数即可.

1)设每个人的血呈阴性反应的概率为,则.

所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.

依题意可知所以X的分布列为:

2)方案②中.

结合(1)知每个人的平均化验次数为:

.

所以当时,,此时960人需要化验的总次数为662次,

时,,此时960人需要化验的总次数为580次,

时,,此时960人需要化验的次数总为570次,

时化验次数最多, 时次数居中, 时化验次数最少.

而采用方案①则需化验960次,

故在这三种分组情况下,相比方案①,当时化验次数最多可以平均减少960-570=390.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性,并证明有且仅有两个零点;

(Ⅱ)设的一个零点,证明曲线在点处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体PABC的外接球的球心OAB上,且PO⊥平面ABC2ACAB,若四面体PABC的体积为,则该球的体积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,将沿直线翻折成,连结的中点,则在翻折过程中,下列说法中所有正确的是(

A.存在某个位置,使得

B.翻折过程中,的长是定值

C.,则

D.,当三棱锥的体积最大时,三棱锥的外接球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个内角所对的边分别为,设.

1)若,求的夹角

2)若,求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为

(1)补充完整列联表中的数据,并判断是否有把握认为甲乙两套治疗方案对患者白血病复发有影响;

复发

未复发

总计

甲方案

乙方案

2

总计

70

(2)为改进“甲方案”,按分层抽样组成了由5名患者构成的样本,求随机抽取2名患者恰好是复发患者和未复发患者各1名的概率.

附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某湿地公园的鸟瞰图是一个直角梯形,其中:1千米,千米,公园内有一个形状是扇形的天然湖泊,扇形长为半径,弧为湖岸,其余部分为滩地,BD点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段线段,其中Q在线段上(异于线段端点),与弧相切于P点(异于弧端点]根据市场行情段的建造费用是每千米10万元,湖岸段弧的建造费用是每千米万元(步行道的宽度不计),设弧度观光步行道的建造费用为万元.

1)求步行道的建造费用关于的函数关系式,并求其走义域;

2)当为何值时,步行道的建造费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左、右焦点分别为且椭圆上存在一点P,满足.

1)求椭圆C的标准方程;

2)已知AB分别是椭圆C的左、右顶点,过的直线交椭圆CMN两点,记直线的交点为T,是否存在一条定直线l,使点T恒在直线l上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为自然对数的底数).

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试求函数极小值的最大值.

查看答案和解析>>

同步练习册答案